No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 0 answers
  • 1 answers

Anjali Kumari 7 years, 7 months ago

By formula
  • 1 answers

Sia ? 6 years, 4 months ago

Suppose that {tex} \sqrt { p } + \sqrt { q }{/tex} is a rational number equal to {tex} \frac { a } { b }{/tex}, where a and b are integers having no common factor.
Now, {tex} \sqrt { p } + \sqrt { q } = \frac { a } { b }{/tex}
{tex} \Rightarrow \sqrt { p } = \frac { a } { b } - \sqrt { q }{/tex}       (squaring both side)
{tex} \Rightarrow \quad ( \sqrt { p } ) ^ { 2 } = \left( \frac { a } { b } - \sqrt { q } \right) ^ { 2 }{/tex}
{tex} \Rightarrow \quad p = \frac { a ^ { 2 } } { b ^ { 2 } } - 2 \left( \frac { a } { b } \right) \sqrt { q } + q{/tex}
{tex} \Rightarrow \quad 2 \left( \frac { a } { b } \right) \sqrt { q } = \frac { a ^ { 2 } } { b ^ { 2 } } + q - p{/tex}
{tex} \Rightarrow \quad 2 \frac { a } { b } \sqrt { q } = \frac { a ^ { 2 } + b ^ { 2 } ( q - p ) } { b ^ { 2 } }{/tex}
{tex} \Rightarrow \quad \sqrt { q } = \frac { a ^ { 2 } + b ^ { 2 } ( q - p ) } { 2 a b }{/tex}
{tex} \Rightarrow \sqrt { q }{/tex} is a rational number. (because sum of two rational numbers is always rational)
This is a contradiction as {tex} \sqrt { q }{/tex} is an irrational number.
Hence, {tex} \sqrt { p } + \sqrt { q }{/tex} is an irrational number.

  • 0 answers
  • 1 answers

Anjali Mahobiya 7 years, 7 months ago

...????
  • 0 answers
  • 2 answers

Khushboo Deshmukh 7 years, 7 months ago

Proof = (contradiction method ) Let √5 is a rational P/q=√5 (p and q coprime) Square both sides P2 /q2 = 5 P2 = 5 q2 equations (1) 5 divides p2 5 divides p equation (2) Let p= 5 M Square both sides P2=25M2 Put p2 =5q2 from eq (1) 5 q2 = 25 m2 q2=25m2/5 q2=5m2 5 divides q2 5 divide q (3) From (1) and (3) 5 is factor of both p and q P and q are not coprime ( from equation (1) ) This is contradiction of our assumption P and q are coprime So, our assumption is wrong Hence, √5 is a irrational Proved

Deeksha Kalyan 7 years, 7 months ago

Not possible in this app
  • 0 answers
  • 4 answers

Mohammad Asif 7 years, 7 months ago

2

Aaryan Dhamija 7 years, 7 months ago

2

Deeksha Kalyan 7 years, 7 months ago

Its answer is 2

..... ...... 7 years, 7 months ago

2
  • 0 answers
  • 4 answers

Priyanshu Kumar 7 years, 7 months ago

Countless

Nancy Garg 7 years, 7 months ago

. .. .. ... .............

Palak Verma 7 years, 7 months ago

Many shapes

Amaira Khan 7 years, 7 months ago

......
  • 0 answers
  • 1 answers

Santosh Kumar 7 years, 7 months ago

First let root 6 is a rational no. Now √ 6= a\b √6b=a Here a is a rational no and a= √6b Here √6b is a rational no. So our contradiction is wrong so it is proved that √6is irrational no
  • 0 answers
  • 1 answers

Shubham Patil 7 years, 5 months ago

0
  • 1 answers

Sia ? 6 years, 4 months ago

Let the coordinates of the required point be (x, y). Then,
{tex}x = \frac{{{m_1}{x_2} + {m_2}{x_1}}}{{{m_1} + {m_2}}}{/tex}
{tex}= \frac{{(2)(4) + (3)( - 1)}}{{2 + 3}}{/tex}
{tex}= \frac{{8 - 3}}{5} = \frac{5}{5} = 1{/tex}
{tex}y = \frac{{{m_1}{y_2} + {m_2}{y_1}}}{{{m_1} + {m_2}}}{/tex}
{tex} = \frac{{(2)( - 3) + (3)(7)}}{{2 + 3}}{/tex}
{tex} = \frac{{ - 6 + 21}}{5} = \frac{{15}}{5} = 3{/tex}
Hence, the required point is (1, 3).

  • 1 answers

Dhruvrajsinh Vala 7 years, 7 months ago

Only final exam will be evaluated but school can take periodic tests and compress them to specific limit.
  • 0 answers
  • 1 answers

M Ram 5 years, 8 months ago

23
  • 2 answers

Dhruvrajsinh Vala 7 years, 7 months ago

It is the approx. Value of π

Viksita Bhardwaj 7 years, 7 months ago

3.142
  • 1 answers

Nikhil Shukla 7 years, 7 months ago

u=1 , v=3/2
  • 4 answers

Lagnesh Chaudhary 7 years, 7 months ago

X^y - X^y

Bbavya Mittal 7 years, 7 months ago

0

Sanjana Sharma 7 years, 7 months ago

Ofcourse 0 yr what a stupid question u put ???totally useless.

Gurjant Kular 7 years, 7 months ago

0
  • 1 answers

Anshika Mittal 7 years, 7 months ago

We can write 0/0 =100 -100/100 -100 =(10×10-10×10)/10 (10-10) =(10+10)(10 +10)/10 (10+10) =20/10 =2 Hence proved

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App