No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 0 answers
  • 1 answers

Sia ? 6 years, 4 months ago

Prime factorisation of 404 and 96 is:

404 = 2 {tex}\times{/tex} 2 {tex}\times{/tex} 101

404 = 22 {tex}\times{/tex} 101
96 = 2 {tex}\times{/tex} 2 {tex}\times{/tex} 2 {tex}\times{/tex} 2 {tex}\times{/tex} 2 {tex}\times{/tex} 3

96 = 25 {tex}\times{/tex} 3
{tex}\therefore{/tex} HCF(404,96 )= 22 = 4
LCM(404, 96 ) = 101 {tex}\times{/tex} 25 {tex}\times{/tex} 3

LCM( 404, 96) = 9696

now we have to verify that,

HCF(404, 96) {tex}\times{/tex}LCM(404, 96) = 404{tex}\times{/tex}96
Hence,

LHS = HCF {tex}\times{/tex} LCM

        = 4 {tex}\times{/tex} 9696

        = 38784
 RHS= Product of numbers

        =404 {tex}\times{/tex} 96 = 38784

Since, LHS=RHS
i.e. HCF {tex}\times{/tex} LCM = Product of 404 and 96.

hence verified

  • 0 answers
  • 4 answers

Shivani Pradhan 7 years, 7 months ago

its 6

Lipsa Rani 7 years, 7 months ago

6 as multiplication will be first.

Shaheen Hussain 7 years, 7 months ago

8

Yash Ojha 7 years, 7 months ago

Use BODMAS rule and try to find ? Ok so, 2+2*2= 6
  • 1 answers

Kunal Rajour 7 years, 7 months ago

First take LCM of alpha and beta in denoninators and then add alpha square and beta square and -2 alpha beta in numerator. Now put the values which are alpha+beta=-b/a and alpha×beta=c/a. Then you will get (b square + c )/a.
  • 2 answers

Puneet Sharma 7 years, 7 months ago

O

Nikhil Kumar 7 years, 7 months ago

M=1.8
  • 1 answers

Anmol Singh 7 years, 7 months ago

Find HCf of 210 and 55. .i.e 5 and then equate in the equation 210×5 - 55y=5 which is equal to 19
  • 1 answers

Taniya Singhal 7 years, 7 months ago

0.0833333333333
  • 2 answers

Kunal Rajour 7 years, 7 months ago

One day= 24 x 60 x 60 seconds. Or 86400 seconds.

Taniya Singhal 7 years, 7 months ago

86400seconds
  • 1 answers

Asmita Singh 7 years, 7 months ago

a²+b²+2ab
  • 2 answers

Ajay Tagalpallewar 7 years, 7 months ago

Please see answer in RD Sharma, shrishty

Aisha Khana Aisha Khana 7 years, 7 months ago

no
  • 1 answers

Sia ? 6 years, 6 months ago

The given system of equations may be written as
x + y = a - b
So,  x + y -(a - b)=0 ......... (i)
and ax - by = a2 + b2
So, ax - by -(a2 + b2)=0 ........ (ii)
By cross-multiplication, using (i) and (ii) , we have
{tex}\frac { x } { - \left( a ^ { 2 } + b ^ { 2 } \right) - b ( a - b ) } = \frac { y } { - a ( a - b ) + \left( a ^ { 2 } + b ^ { 2 } \right) } = \frac { 1 } { - b - a }{/tex}
{tex}\Rightarrow \quad \frac { x } { - a ^ { 2 } - a b } = \frac { y } { a b + b ^ { 2 } } = \frac { 1 } { - b - a }{/tex}
{tex}\Rightarrow \quad \frac { x } { - a ( a + b ) } = \frac { y } { b ( a + b ) } = \frac { 1 } { - ( a + b ) }{/tex}
{tex}\Rightarrow \quad x = \frac { - a ( a + b ) } { - ( a + b ) } = a \text { and } y = \frac { b ( a + b ) } { - ( a + b ) } = - b{/tex}
Hence, x = a, y = -b is the solution of the given system of equations.

  • 1 answers

Sia ? 6 years, 6 months ago

Get NCERT solutions here: <a href="https://mycbseguide.com/ncert-solutions.html">https://mycbseguide.com/ncert-solutions.html</a>

  • 1 answers

Pankaj Chauhan 7 years, 7 months ago

x=21/8 and y=-1/4
  • 2 answers

Jatin Singh 7 years, 7 months ago

Mathematics

Pankaj Chauhan 7 years, 7 months ago

Maths
  • 1 answers

Sia ? 6 years, 6 months ago

Let the speed of the stream be x km/hr.
 Speed of boat upstream = (5 - x) km/hr.
Speed of boat downstream = (5 + x) km/hr.
Time taken to go upstream = {tex} \frac { 5.25 } { 5 - x }{/tex} hours.
Time taken to go downstream = {tex} \frac { 5.25 } { 5 + x }{/tex} hours.

According to question,
{tex} \therefore \quad \frac { 5.25 } { 5 - x } - \frac { 5.25 } { 5 + x } = 1{/tex}
{tex} \Rightarrow \quad 5.25 [ \frac { 1 } { 5 - x } - \frac { 1 } { 5 + x } ] = 1{/tex}
{tex} \Rightarrow \quad \frac { 21 } { 4 } [ \frac { 5 + x - 5 + x } { ( 5 - x ) ( 5 + x ) } ] = 1{/tex}
{tex} \Rightarrow \quad \frac { 21 } { 4 } \times \frac { 2 x } { 25 - x ^ { 2 } } = 1{/tex}
{tex} \Rightarrow \quad 21 x = 50 - 2 x ^ { 2 }{/tex}
{tex} \Rightarrow{/tex} 2x2 + 21x - 50 = 0
{tex}\Rightarrow{/tex} 2x2 + 25x - 4x - 50 = 0
{tex} \Rightarrow \quad x ( 2 x + 25 ) - 2 ( 2 x + 25 ) = 0{/tex}
{tex} \Rightarrow{/tex} (2x + 25) (x - 2) = 0
{tex} \Rightarrow{/tex} x - 2 = 0, 2x + 25 = 0

 {tex} \Rightarrow{/tex} x = 2 {tex} \left[ \because x \neq - \frac { 25 } { 2 } \text { as } x > 0 \right]{/tex}
Hence, the speed of the stream is 2 km/hr.

  • 1 answers

Taniya Singhal 7 years, 7 months ago

1/cosec&
  • 0 answers
  • 1 answers

Sia ? 6 years, 6 months ago

Get NCERT solutions here : https://mycbseguide.com/ncert-solutions.html

  • 1 answers

Sia ? 6 years, 6 months ago

Get NCERT solutions here : https://mycbseguide.com/ncert-solutions.html

  • 3 answers

Meena Sharma 7 years, 7 months ago

Root 2 is irrational And when rational is divided by irrational it will alwz give irrational ☺

Kunal Rajour 7 years, 7 months ago

I mean Contradiction method

Kunal Rajour 7 years, 7 months ago

Solve this question using the assumption and conyradiction method as solved in NCERT.
  • 3 answers

Shivani Pradhan 7 years, 7 months ago

practise it...

Simar Simar 7 years, 7 months ago

Write in the notebook

Varpreet Singh 7 years, 7 months ago

Ratlo ji
  • 1 answers

Kunal Rajour 7 years, 7 months ago

9a^2b^2
  • 1 answers

Shweta Singh 7 years, 7 months ago

What root to
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App