No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 3 answers

Vaishnavi Singh 7 years, 7 months ago

If 9n ends with 0 then it must have 5 as a factor. But 9n has factor of (3.3)n =(3n.3n) which shows that 3 is the only factor of 9n. We know the fundamental theorem of arithematic ie. (5m.2n) and 9n does not apply on 9n. So, 9n can never end with zero.

Anant Yadav 7 years, 7 months ago

It can be written in the form of 3n^2. So to end with 0 it should have 5 as a prime factor but clearly it does not have any so it cannot end with 0

Susmit Mishra 7 years, 7 months ago

9n= 3^2n the prime factorisation does not contain 10 and it is unique so 9n deos not end with zero
  • 1 answers

Jacob Singh 7 years, 7 months ago

Numbers which have decimal expansion as non terminating and non repeating are called as irrational no or numbers which are not rational no they are irrational
  • 1 answers

Vaishnavi Singh 7 years, 7 months ago

=7*11*13*15+15 =15(7*11*13+1) =15(1002) It clearly shows that it has two factors. Hence, it is a composite numbers
  • 0 answers
  • 1 answers

Sia ? 6 years, 6 months ago

Let the number be (3q + r)
{tex}n = 3 q + r \quad 0 \leq r < 3{/tex}
{tex}\text { or } 3 q , 3 q + 1,3 q + 2{/tex}
{tex}\text { If } n = 3 q \text { then, numbers are } 3 q , ( 3 q + 1 ) , ( 3 q + 2 ){/tex}
{tex}3 q \text { is divisible by } 3{/tex}.
{tex}\text { If } n = 3 q + 1 \text { then, numbers are } ( 3 q + 1 ) , ( 3 q + 3 ) , ( 3 q + 4 ){/tex}
{tex}( 3 q + 3 ) \text { is divisible by } 3{/tex}.
{tex}\text { If } n = 3 q + 2 \text { then, numbers are } ( 3 q + 2 ) , ( 3 q + 4 ) , ( 3 q + 6 ){/tex}
{tex}( 3 q + 6 ) \text { is divisible by } 3{/tex}.
{tex}\therefore \text { out of } n , ( n + 2 ) \text { and } ( n + 4 ) \text { only one is divisible by } 3{/tex}.

  • 1 answers

Rishivar Kumar Jha 7 years, 7 months ago

HCF=26
  • 1 answers

Adarsh Sharma 7 years, 7 months ago

26
  • 1 answers

Susmit Mishra 7 years, 7 months ago

1.41........
  • 1 answers

Sia ? 6 years, 6 months ago

According to the question, we have to show that every positive integer is either even or odd.

Let us assume that there exists a smallest positive integer that is neither odd nor even, say n. Since n is the least positive integer which is neither even nor odd, n - 1 must be either odd or even.
Case 1: If n - 1 is even, n - 1 = 2k for some k.
But this implies n = 2k + 1
This implies n is odd.
Case 2: If n - 1 is odd, n - 1 = 2k + 1 for some k.
But this implies n = 2k + 2 = 2(k + 1)
This implies n is even.
Therefore,In both cases , we arrive at a contradiction.

Thus, every positive integer is either even or odd

  • 0 answers
  • 3 answers

Simran Tejasvi 7 years, 7 months ago

The no which had only one common factor

Kunal Rajour 7 years, 7 months ago

The numbers which have only 1 as a common factor or 1 as their HCF are called co-prime numbers.

Sonu Goyal 7 years, 7 months ago

If two integer have only one common factor i.e. 1 is said to be co prime . Eg-( 7 , 9)
  • 1 answers

Sia ? 6 years, 6 months ago

Let the speed of the train be x km/h and the time taken by train to travel the given distance be t hours and the distance to travel be d km.
Since, Speed = {tex}\frac{{{\text{Distance travelled}}}}{{{\text{Time taken to travel that distance}}}}{/tex} {tex} \Rightarrow x = \frac{d}{t} \Rightarrow{/tex} d = xt ....(1)
According to the question,
x + 10 = {tex}\frac{d}{{t - 2}} \Rightarrow{/tex} (x + 10)(t - 2) = d
{tex}\Rightarrow{/tex} xt + 10t - 2x - 20 = d
{tex}\Rightarrow{/tex} -2x + 10t = 20 .....(2) [Using eq. (1)]
Again, x - 10 = {tex}\frac{d}{{t + 3}} \Rightarrow{/tex} (x - 10)(t + 3) = d
{tex}\Rightarrow{/tex} xt - 10t + 3x - 30 = d
{tex}\Rightarrow{/tex} 3x - 10t = 30 .....(3) [Using eq. (1)]
Adding equations (2) and (3), we obtain:
x = 50
Substituting the value of x in equation (2), we obtain:
(-2) {tex}\times{/tex} (50) + 10t = 20 {tex}\Rightarrow{/tex}-100 + 10t = 20
{tex}\Rightarrow{/tex}10t = 120
t = 12
From equation (1), we obtain:
d = xt = 50 {tex}\times{/tex} 12 = 600
Thus, the distance covered by the train is 600 km.

  • 1 answers

Sia ? 6 years, 4 months ago

The system of equation is given by :
bx + cy = a + b ......(i)
{tex}ax\left( {\frac{1}{{a - b}} - \frac{1}{{a + b}}} \right) + cy\left( {\frac{1}{{b - a}} + \frac{1}{{b + a}}} \right){/tex}{tex}= \frac{{2a}}{{a + b}}{/tex} ...(ii)
From equation (i)
bx + cy - (a + b) = 0 ............ (iii)
From equation (ii)
{tex} ax\left( {\frac{1}{{a - b}} - \frac{1}{{a + b}}} \right) + cy\left( {\frac{1}{{b - a}} + \frac{1}{{b + a}}} \right){/tex} {tex} - \frac{{2a}}{{a + b}} = 0{/tex}
{tex}⇒ x\left( {\frac{{2ab}}{{(a - b)(a + b)}}} \right) + y\left( {\frac{{2ac}}{{(b - a)(b + a)}}} \right){/tex} {tex}- \frac{{2a}}{{a + b}} = 0{/tex}
{tex} ⇒ \frac{1}{{a + b}}\left( {\frac{{2abx}}{{a - b}} - \frac{{2acy}}{{a - b}} - 2a} \right) = 0{/tex} 
{tex}⇒ \frac{{2abx}}{{a - b}} - \frac{{2acy}}{{a - b}} - 2a = 0{/tex}
  2abx - 2acy - 2a(a - b) = 0 ....(iv)
From equation (iii) and (iv), we get
a1 = b, b1 = c and c1 = - (a + b)
and a2 =  2ab , b2 = -2ac  and c3 = -2a(a - b)
by cross-multiplication, we get
{tex}\frac{x}{{ - 4{a^2}c}} = \frac{{ - y}}{{4a{b^2}}} = \frac{{ - 1}}{{4abc}}{/tex}
Now, {tex}\frac{x}{{ - 4{a^2}c}} = \frac{{ - 1}}{{4abc}} {/tex}
{tex}⇒ x = \frac{a}{b}{/tex}
And, {tex}\frac{{ - y}}{{4a{b^2}}} = \frac{{ - 1}}{{4abc}} {/tex}
{tex}⇒ y = \frac{b}{c}{/tex}
The solution of the system of equation are {tex}\frac{a}{b}{/tex} and {tex}\frac{b}{c}{/tex}.

  • 8 answers

Susmit Mishra 7 years, 7 months ago

Are u a foooooooooooooool

Simran Tejasvi 7 years, 7 months ago

246

Anshika Mittal 7 years, 7 months ago

What is the need to ask this rype of question you can do it yourself only

Rajesh Rajesh 7 years, 7 months ago

246

Vikas Kumar 7 years, 7 months ago

246

Amisha Sharma ? 7 years, 7 months ago

Such a stupid question

Tribhawanjot Singh 7 years, 7 months ago

246

Shivam Mourya 7 years, 7 months ago

246
  • 6 answers

Vaishnavi Singh 7 years, 7 months ago

No, because every no. has the factor of 1

Simran Tejasvi 7 years, 7 months ago

No because it not have more than one factor

Kunal Rajour 7 years, 7 months ago

It do not have more than 1 factor. So it is neithre a composite number nor a prime number.

Saksham Garg 7 years, 7 months ago

No its not a prime no.

Tribhawanjot Singh 7 years, 7 months ago

It is nor prime nor a composite number

Tribhawanjot Singh 7 years, 7 months ago

No
  • 1 answers

Sia ? 6 years, 6 months ago

Any of the prime numbers that can be multiplied to give the original number.
Example: The prime factors of 15 are 3 and 5 (because 3×5=15, and 3 and 5 are prime numbers).

  • 1 answers

Arjeet Dahiya 7 years, 7 months ago

13is the hcf of this qu.
  • 1 answers

Pritam Kumar 7 years, 7 months ago

3√2-√6/8
  • 1 answers

Vaishnavi Singh 7 years, 7 months ago

x=3 , y=4
  • 1 answers

Sia ? 6 years, 6 months ago

Here we have to find out HCF of 2160 and 847 by Using Euclid’s division Lemma, we get
2160 = 847{tex}\times{/tex}2 + 466
Also 847 = 466{tex}\times{/tex}1 + 381
466 = 381{tex}\times{/tex}1 + 85
381 = 85{tex}\times{/tex}4 + 41
85 = 41{tex}\times{/tex}2 + 3
41=3{tex}\times{/tex}13 + 2
3 = 2{tex}\times{/tex}1 + 1
2 = 1{tex}\times{/tex}2 + 0
{tex}\therefore{/tex}HCF = 1.
Hence the numbers are co-prime.

1/0
  • 3 answers

Vaishnavi Singh 7 years, 7 months ago

Not defined

Kunal Rajour 7 years, 7 months ago

Since denominator is 0 then the no. is imaginary. So it do not have any real value. In other word we can say that it is not defined.

Bimansu Sahoo 7 years, 7 months ago

The answer is"not define"
  • 5 answers

Vaishnavi Singh 7 years, 7 months ago

One upon root 3

Pawan Kumar 7 years, 7 months ago

Root 3

Razique Siddiqui 7 years, 7 months ago

Itti jaldi aap thita wale chapter padhne lage

Saloni Saini 7 years, 7 months ago

Tan30 answer

Saloni Saini 7 years, 7 months ago

Tan(90-77)tan21tan30 tan(90-21)tan77 Cot77tan21tan30cot21tan77 1/tan77 tan21 tan30 1/tan21 tan77
  • 1 answers

Sia ? 6 years, 4 months ago

{tex}\alpha , \beta \text { and } \gamma{/tex} are zeroes of the polynomial 6x3 + 3x2 - 5x + 1

in the given polynomial,  6x3 + 3x2 - 5x + 1

a=6,  b=3,  c=-5,  d=1

Sum of the roots = {tex}- \frac {b}{a}{/tex}
{tex}\alpha + \beta + \gamma = - \frac { 3 } { 6 }{/tex}
{tex}\alpha + \beta + \gamma = - \frac { 1 } { 2 }{/tex}

sum of the Product of the roots = {tex}\frac {c}{a}{/tex}
{tex}\alpha \beta + \beta \gamma + \gamma \alpha = - \frac { 5 } { 6 }{/tex}

Product of the roots = {tex}- \frac{d}{a}{/tex}

 {tex}\alpha \beta \gamma = - \frac { 1 } { 6 }{/tex}
{tex}\therefore \quad \frac { 1 } { \alpha } + \frac { 1 } { \beta } + \frac { 1 } { \gamma } = \frac { \alpha \beta + \beta \gamma + \gamma \alpha } { \alpha \beta \gamma }{/tex}
{tex}= \frac { - 5 / 6 } { - 1 / 6 } = \frac { - 5 } { 6 } \times \frac { 6 } { - 1 }{/tex}
Hence, {tex}\alpha ^ { - 1 } + \beta ^ { - 1 } + \gamma ^ { -1 } = 5{/tex}

  • 1 answers

Anuvart Chaudhary 7 years, 7 months ago

Formule SQUARE OF CURRENT MULTIPLY RESISTANCE MULTIPLY TIME Acc.to formule 15 * 15 *8*2 225*16 =3600 J
  • 1 answers

Aryan Rawat 7 years, 5 months ago

Please i need answer
  • 1 answers

Bhim Kumar 7 years, 7 months ago

Y=x2-1find the zeros by graphical method

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App