No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Rashim Maan 7 years, 7 months ago

22
  • 0 answers
  • 1 answers

Devanshi Meena 7 years, 7 months ago

10
  • 2 answers

Riy Rawat 7 years, 7 months ago

Give answer

Riy Rawat 7 years, 7 months ago

45,4
  • 1 answers

Shreeya Soni 7 years, 7 months ago

1+3+5+5+3!
  • 0 answers
  • 0 answers
  • 1 answers

Lakshmi Santhosh 7 years, 7 months ago

Let 5root2 be a rational number 5root2=p\q Root2=p\5q Now p\q is also a rational number But we know that root2 is irrational It contradicts our assumption Hence 5root2 is an irrational number
  • 0 answers
  • 0 answers
  • 0 answers
  • 2 answers

Anuvart Chaudhary 7 years, 7 months ago

Study chapter 3 in book

Jkabdjd Vj Kk Kb Ncrt 7 years, 7 months ago

With the help of formulas
  • 0 answers
  • 1 answers

Santosh James 7 years, 7 months ago

122221
  • 1 answers

Sia ? 6 years, 6 months ago

LCM of rational number ={tex}\frac{{{\text{LCM of numerators}}}}{{{\text{HCF of denominators}}}}{/tex}
Numbers are {tex}\frac { 25 } { 10 } , \frac { 5 } { 10 } , \frac { 175 } { 1000 }{/tex}
Now, 25 = 5{tex}\times{/tex}5; 5 = 5{tex}\times{/tex}1; 175 = 5{tex}\times{/tex}5{tex}\times{/tex}7
LCM of (25, 5, 175) = 5{tex}\times{/tex}5{tex}\times{/tex}7 = 175
Also, 
10 = 2{tex}\times{/tex}5; 1000 = 2{tex}\times{/tex}2{tex}\times{/tex}2{tex}\times{/tex}5{tex}\times{/tex}5{tex}\times{/tex}5
HCF of (10,10,1000) = 10
LCM of (2.5, 0.5, 0.175) ={tex}\frac { 175 } { 10 } = 17.5{/tex}

  • 3 answers

Krishika Pandhi 7 years, 7 months ago

Irrational

Aadharshini Sudha 7 years, 7 months ago

Irrational

Gitansh Asrani 7 years, 7 months ago

Rational
  • 0 answers
  • 2 answers

Account Deleted 7 years, 7 months ago

234u9

Gitansh Asrani 7 years, 7 months ago

22338
  • 3 answers

Ashish Kumar 7 years, 7 months ago

0

Ashish Kumar 7 years, 7 months ago

-7

Paras Garg 7 years, 7 months ago

7
  • 1 answers

Yashwanth Napa 7 years, 7 months ago

HCF=13,m=2,n=-1
  • 1 answers

Sia ? 6 years, 6 months ago

Let the cost price of an article be Rs. x. It is given that percentage gain is equal to cost price of the article.
Hence, percentage gain = x%
{tex}{/tex} {tex}{/tex}{tex}S\cdot P=C\cdot P(1+\frac{percentagegain)}{100}{/tex}[S.P is selling price]
{tex}\therefore{/tex}S.P. = {tex}x(1+\frac x{100}){/tex} = x + {tex}\frac { x ^ { 2 } } { 100 }{/tex}
Given, S.P. = Rs. 75
{tex}\Rightarrow x + \frac { x ^ { 2 } } { 100 } = 75{/tex}
{tex}\Rightarrow{/tex} 100x + x2 = 7500
{tex}\Rightarrow{/tex} x2 + 100x - 7500 = 0
{tex}\Rightarrow{/tex} x2 + 150x - 50x - 7500 = 0
{tex}\Rightarrow{/tex} x(x + 150) - 50(x +150) = 0
{tex}\Rightarrow{/tex} (x + 150) (x - 50) = 0
{tex}\Rightarrow{/tex} x + 150 = 0 or x - 50 = 0
Since the price cannot be negative, x {tex}\neq{/tex} -150.
{tex}\Rightarrow{/tex} x = 50
Thus, the cost price of an article =Rs. x = Rs. 50.

  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App