No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 0 answers
  • 1 answers

Sia ? 6 years, 4 months ago

The given equations are:
{tex}\frac { x + y - 8 } { 2 } = \frac { x + 2 y - 14 } { 3 } = \frac { 3 x + y - 12 } { 11 }{/tex}
Therefore, we have
{tex}\frac { x + y - 8 } { 2 } = \frac { 3 x + y - 12 } { 11 }{/tex}
By cross multiplication,we get
{tex}11x + 11y - 88 = 6x + 2y - 24{/tex}
{tex}11x - 6x + 11y -2y = -24 + 88{/tex}
{tex}5x + 9y = 64 {/tex}..........(i)

 and {tex}\frac { x + 2 y - 14 } { 3 } = \frac { 3 x + y - 12 } { 11 }{/tex}
By cross multiplication,we get
{tex}11x + 22y -154 = 9x + 3y - 36{/tex}
{tex}11x - 9x + 22y -3y = -36 + 154{/tex}
{tex}2x + 19y = 118{/tex}.........(ii)

Multiplying (i) by 19 and (ii) by 9, we get
{tex}95x + 171y = 1216{/tex} .......(iii)
{tex}18x + 171y = 1062{/tex} .......(iv)
Subtracting (iv) from (iii),we get
{tex}77 x = 154 \Rightarrow x = 2{/tex}

Substituting x = 2 in (i),we get
{tex}5 \times 2 + 9 y = 64 \Rightarrow 9 y - 54{/tex}
{tex}\therefore{/tex} Solution is x = 2, y = 6

??
  • 0 answers
  • 2 answers

Yashika Upadhyay 7 years, 7 months ago

C=45°

Ankit Boss 7 years, 7 months ago

C=45
  • 1 answers

Sia ? 6 years, 4 months ago

{tex}\frac { x } { a } + \frac { y } { b } = 2{/tex}
{tex}\frac { b x + a y } { a b } = 2{/tex}
{tex}bx + ay = 2ab{/tex}........(i)
{tex}ax - by = (a^2 - b^2){/tex}...(ii)
Multiplying (i) by b and (ii) by a
{tex}b^2x + bay = 2ab^2{/tex}.............(iii)
{tex}a^2x - bay = a(a^2 - b^2){/tex}........(iv)
Adding (iii) and (iv),we get
{tex}b^2x + a^2x = 2ab^2 + a^3 - ab^2{/tex}
{tex}x(b^2 + a^2) =  2ab^2 + a^3 - ab^2{/tex}
{tex}x(b^2 + a^2) = ab^2 + a^3{/tex}
{tex}x(b^2 + a^2) =a(b^2 + a^2){/tex}
{tex}x = \frac { a \left( b ^ { 2 } + a ^ { 2 } \right) } { \left( b ^ { 2 } + a ^ { 2 } \right) } = a{/tex}
Putting x = a in (i),we get
{tex}b \times a + a y = 2 a b{/tex}
{tex}a y = 2 a b - a b \Rightarrow a y = a b{/tex} or y = b
{tex}\therefore{/tex} solution is x = a, y = b

  • 0 answers
  • 1 answers

Nivedita Gupta 7 years, 7 months ago

Line is the collection of infinite points.,which. Is infinite in length and it has no specific end.
  • 1 answers

Ashu Sharma 7 years, 7 months ago

730
  • 1 answers

Ashu Sharma 7 years, 7 months ago

Largest natural number does not exist because every natural number has its successor
  • 2 answers

Nivedita Gupta 5 years, 8 months ago

Alpha and Beta are the two zeros of any quadratic polynomial

Arshita Patidar 7 years, 7 months ago

Alpha and bits are taken as zeores for polynomials
  • 1 answers

Nivedita Gupta 7 years, 7 months ago

500
  • 1 answers

Yashika Upadhyay 7 years, 7 months ago

Suppose root 5 is a rational number Therefore root 5= p/ , p,q are integers, & q is not equals to 0 On reducing-- root 5= a/b , a & b are coprime no. => b root 5= a Squaring both sides 5b^2= a^2 ------------(i) => b^2 = a^2 /5 Since 5 divides a^2 Therefore 5 will also divide a (by theorem 1.3) ----(ii) => a/5= c => a= 5c => a^2 = 25c^2 => 5b^2 = 25c^2 (by eq.^n (i)) => b^2= 5c^2 => b^2 /5= c^2 Therefore 5 divides b^2 Therefore 5 will also divide b (by theorem 1.3) -----(iii) From eq.^n (ii) & (iii) 5 divides a & b both Therefore 5 is common factor of a & b But this contradict the fact that a & b are coprime Therefore this is due to our wrong assumption that root 5 is rational. Therefore we conclude that root 5 is rational.
  • 0 answers
  • 0 answers
  • 0 answers
  • 1 answers

Nivedita Gupta 7 years, 7 months ago

To prove this you need to prove that root 3 and root 5 are irrational. You can do this by long Method. Okk now then in last you can say that if irrational get added to rational always an irrational no. Comes And sorry I can't write whole answer. But It will be helpful for you. Thanks
  • 1 answers

Unnati Pragya 7 years, 7 months ago

We know that 4q + 1,4q+3 odd positive integer If n=4q+1 n^2-1= 16q^2+8+1-1 n^2-1=8(2q^2+1) n^2-1 is divisible by 8 If n=4q+3 n^2-1=16q^2+24q+9-1 n^2-1= 8(2q^2+3q+1) n^2-1 is divisible by 8 Hence,n^2 -1 is divisible by 8
  • 1 answers

Md.Mehwar Ansari 7 years, 7 months ago

0-9 is single so it is called digit .after it 10-infinity it means group of digit is called number. Hope it will helpful
  • 2 answers

Nivedita Gupta 7 years, 7 months ago

If the denominator is In the form of multiple of 2 and 5 then it is said to be a terminating decimal. Thank you hope it would be useful for you

Dharshini G.S.Dora 7 years, 7 months ago

Sohel shek r u a student of kvs . ok the ans is: the denominator of the rational no. should have the prime factors 2^ m or 5^m or 2^m.5^n .
  • 1 answers

Sia ? 6 years, 4 months ago

Here α and β are the zeros of polynomial f(x) = x2 - px + q
So a=1,b=-p,c=q
Sum of the zeroes α + β={tex}-\frac ba{/tex} = p
Product of the zeroes  αβ=q
 {tex}\frac{{{\alpha ^2}}}{{{\beta ^2}}} + \frac{{{\beta ^2}}}{{{\alpha ^2}}}{/tex}
{tex}= \frac{{{\alpha ^4} + {\beta ^4}}}{{{\alpha ^2}{\beta ^2}}}{/tex}
{tex}=\frac{\left(\mathrm\alpha^2+\mathrm\beta^2\right)^2-2\left(\mathrm{αβ}\right)^2}{\left(\mathrm{αβ}\right)^2}=\frac{\{(\mathrm\alpha+\mathrm\beta)^2-2\mathrm{αβ}\}^2-2\left(\mathrm{αβ}\right)^2}{\left(\mathrm{αβ}\right)^2}{/tex}

{tex}=\frac{(\mathrm p^2-2\mathrm q)^2-2\mathrm q^2}{\mathrm q^2}=\frac{\mathrm p^4+4\mathrm q^2-4\mathrm p^2\mathrm q-2\mathrm q^2}{\mathrm q^2}=\frac{\mathrm p^4+2\mathrm q^2-4\mathrm p^2\mathrm q}{\mathrm q^2}{/tex}

{tex}=\frac{\mathrm p4}{\mathrm q^2}-\frac{4\mathrm p^2\mathrm q}{\mathrm q^2}+\frac{2\mathrm q^2}{\mathrm q^2}=\frac{\mathrm p4}{\mathrm q^2}-\frac{4\mathrm p^2}{\mathrm q}+2=\mathrm{RHS}{/tex}
Hence, proved.

  • 1 answers

Sia ? 6 years, 4 months ago

Draw AD {tex}\perp{/tex} BC

In {tex} ADB \ and \ ADC {/tex}
{tex}AB = AC{/tex} [Given]
{tex}AD = AD{/tex} 
{tex}ADB = ADC [Each \ 90^o]{/tex}
{tex}\therefore{/tex} {tex}\triangle \mathrm { ADB } \cong \triangle \mathrm { ADC }{/tex} 
{tex}\Rightarrow{/tex} {tex}BD = CD{/tex}
{tex}\therefore{/tex} AC passes through  O,centre of the circle 
{tex}\therefore{/tex} Perpendicular bisector of the chord passes through the centre of the circle 
Now OA {tex}\perp{/tex} PQ (radius through the point of contact)
{tex}\therefore{/tex} {tex}\angle{/tex}PAO = 90o 
Also {tex} ADB = 90^o{/tex}
{tex}\therefore{/tex} {tex}\angle \mathrm { PAO } + \angle \mathrm { ADB } = 180 ^ { \circ }{/tex} 
{tex}\therefore{/tex} AP||BC

  • 1 answers

Sahith Panga 4 years, 10 months ago

Let us assume that root5-root3 is not an irrational number So root5-root3 is rational number Therefore root5-root3=a/b b=a/root5-root3=a/root5-root3*root5+root3/root5+root3=a(root5+root 3) /2 b=a(root5+root 3)/2 It is impossible since rational number b is equal to irrational number a(root5+root 3)/2 So our assumption is wrong Therefore root 5-root 3is irrational number
  1. Find the HCF of highest two digit number and highest three digit number using Euclid Lemma.
  2. Show that every even positive integer can be expressed as 6q+1, 6q+3, and 6q+5.
  3. Prove that square of a positive integer can be expressed in the form 3n or 3n+1.
  4. Prove that <m:omath><m:rad><m:radpr><m:deghide m:val="on"><m:ctrlpr></m:ctrlpr></m:deghide></m:radpr><m:deg></m:deg><m:e><i><m:r>3</m:r></i></m:e></m:rad></m:omath> is an irrational number.
  5. Find whether the decimal representation of <m:omath><m:f><m:fpr><m:ctrlpr></m:ctrlpr></m:fpr><m:num><i><m:r>310</m:r></i></m:num><m:den><i><m:r>775×8</m:r></i></m:den></m:f></m:omath> is terminating or not? If terminating, write its decimal form.
  6. In a cinema hall there are three types of classes, I, II and balcony. Number of seats in each class is 225, 315 and 135 respectively. The management wanted to put equal and maximum number of chairs in each row. Find the number of chairs in each row?
  7. Prove that 2 – 5<m:omath><m:rad><m:radpr><m:deghide m:val="on"><m:ctrlpr></m:ctrlpr></m:deghide></m:radpr><m:deg></m:deg><m:e><i><m:r>3</m:r></i></m:e></m:rad></m:omath> is an irrational number.
  8. Find the value of “n” so that 6n ends with zero? Justify your answer.
  9. Find whether the number 2x3x5x7x11 + 5 a prime or composite? Justify your answer.
  10. Find the GCD of the numbers 215, 135 and 725 using Euclid algorithm.
  11. Factorize each of the numbers 2304 and 1296 and hence find LCM and GCD.
  12. Find three integral solutions of the linear equation 2x + 3y = 5.
  13. Write as linear equation: the cost  of 5 kg sugar and 3 kg oil is ` 440.
  14. Express as Linear equations: The total strength of a class is 56, and twice the number of boys is equal to 5 times the number of girls.
  15. Draw the graph of the following pair of linear equations:
  16. (i)            2x + y = 5, x + 2y = 4

    (ii)           3x – 2y = 7, 2x + 3y = –4

  • 2 answers

Nivedita Gupta 7 years, 7 months ago

Are they important question or anything else.

Unnati Pragya 7 years, 7 months ago

Yeh tera HHW hai kya
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App