No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Radhika Sharma 7 years, 6 months ago

What is the solution of this above question
  • 1 answers

Samit Gautam 7 years, 6 months ago

In this app
  • 2 answers

Sania Zubair 7 years, 6 months ago

Yaa

A New Girl In The City 7 years, 6 months ago

At the last session .. before final exams
  • 1 answers

Abhishek Dubey 7 years, 6 months ago

Ax2 + bx + c
  • 1 answers

Sabir Ali 7 years, 6 months ago

Study trigonometry ,real number and algebra for passing
  • 1 answers

Sia ? 6 years, 6 months ago

Any positive integer is of the form 2q or 2q + 1, for some integer q.
{tex}\therefore{/tex} When n = 2q
{tex}\style{font-family:Arial}{n^2\;-\;n\;=\;n(n\;-\;1)\;=\;2q(2q\;-\;1)=\;2m,}{/tex}
where m = q(2q - 1)  ( m is any integer)

This is divisible by 2
When n = 2q + 1
{tex}\style{font-family:Arial}{\begin{array}{l}n^2\;-\;n\;=\;n(n\;-\;1)\;=\;(2q\;+\;1)(2q+1-1)\\=2q(2q+1)\end{array}}{/tex}
= 2m, when m = q(2q + 1)  ( m is any integer)
which is divisible by 2.
Hence, n2 - n is divisible by 2 for every positive integer n.

  • 4 answers

Ankita ?? Arpita☺️ 7 years, 6 months ago

How 99

Ankita ?? Arpita☺️ 7 years, 6 months ago

2

Aditya Sharma 7 years, 6 months ago

2

Gaurav Gupta 5 years, 8 months ago

99
  • 1 answers

Dushyant Garg 7 years, 6 months ago

a=bq+r
  • 1 answers

Sia ? 6 years, 6 months ago

the decimal expansion of given rational number is:
{tex}\frac { 15 } { 1600 } = \frac { 15 } { 2 ^ { 4 } \times 10 ^ { 2 } } = \frac { 15 \times 5 ^ { 4 } } { 2 ^ { 4 } \times 5 ^ { 4 } \times 10 ^ { 2 } } = \frac { 9375 } { 10 ^ { 6 } } = .009375{/tex}

  • 1 answers

Sia ? 6 years, 6 months ago

First, find the HCF of 210 and 55 by Euclid's Division Algorithm  

210 = 55 {tex}\times{/tex} 3 + 45

55 = 45 {tex}\times{/tex} 1 + 10

45 = 10 {tex}\times{/tex} 4 + 5

10 = 5 {tex}\times{/tex} 2 + 0 (zero remainder)

therefore, HCF (210 , 55) = 5

Now,

{tex}\therefore {/tex} {tex}5 = 210 \times 5 + 55y{/tex}

{tex} \Rightarrow {/tex} {tex}5 - 1050 = 55y{/tex}

{tex} \Rightarrow {/tex} {tex} - 1045 = 55y{/tex}

{tex} \Rightarrow {/tex} {tex}y = - 19{/tex}

  • 4 answers

Tarun Rana 7 years, 6 months ago

All nature numbers along with 0 are called whole numbers

Ashok Sahu 7 years, 6 months ago

The numbers which start with 0

Kamal Sharma 7 years, 6 months ago

Start with 0

Divya Attal 7 years, 6 months ago

Whole number is a number which starts from 0 to infinity
  • 2 answers

Kannu Kranti Yadav 7 years, 6 months ago

U mean board exams,right.well yes it will be a board class

Shivani K 7 years, 6 months ago

Mtlb
  • 3 answers

Rishita Sinha 7 years, 6 months ago

Please write the question properly

Ankita ?? Arpita☺️ 7 years, 6 months ago

Question nahi samajh salti hy

Ankita ?? Arpita☺️ 7 years, 6 months ago

Ar ek bar question likho
  • 1 answers

Shivani K 7 years, 6 months ago

0 is divisible by 2
  • 1 answers

Sia ? 6 years, 6 months ago

n- n = n (n- 1) = n (n - 1) (n + 1) 

Whenever a number is divided by 3, the remainder obtained is either 0 or 1 or 2.
∴ n = 3p or 3p + 1 or 3p + 2, where p is some integer.
If n = 3p, then n is divisible by 3.
If n = 3p + 1, then n – 1 = 3p + 1 –1 = 3p is divisible by 3.
If n = 3p + 2, then n + 1 = 3p + 2 + 1 = 3p + 3 = 3(p + 1) is divisible by 3.
So, we can say that one of the numbers among n, n – 1 and n + 1 is always divisible by 3.
⇒ n (n – 1) (n + 1) is divisible by 3.
 
Similarly, whenever a number is divided by 2, the remainder obtained is 0 or 1.
∴ n = 2q or 2q + 1, where q is some integer.
If n = 2q, then n is divisible by 2.
If n = 2q + 1, then n – 1 = 2q + 1 – 1 = 2q is divisible by 2 and n + 1 = 2q + 1 + 1 = 2q + 2 = 2 (q + 1) is divisible by 2.
So, we can say that one of the numbers among n, n – 1 and n + 1 is always divisible by 2.
⇒ n (n – 1) (n + 1) is divisible by 2.
Since, n (n – 1) (n + 1) is divisible by 2 and 3.

∴ n (n-1) (n+1) = n- n is divisible by 6.( If a number is divisible by both 2 and 3 , then it is divisible by 6) 
 

  • 1 answers

Sayantika Roy 7 years, 6 months ago

9×4=36 36+x by x+5 ×+36÷x+5 x+5)x+36 (1 x+5 --------------- +31 Remainder=31
  • 2 answers

Rishita Sinha 7 years, 6 months ago

SinA=60 or 120

Ankita ?? Arpita☺️ 7 years, 6 months ago

1+$in square A=7/4 =Sin squareA=7/4-1 =Sin squareA=3/4 =Sin A=√3/4 =SinA=√3/2 A=60
  • 1 answers

Sia ? 6 years, 6 months ago

Let, {tex}α{/tex} = a - d, {tex}β{/tex} = a and  {tex}\gamma {/tex} = a + d be the zeroes of the polynomial.
f(x) = 2x3 - 15x2 + 37x - 30
{tex}\alpha + \beta + \gamma = - \left( {\frac{{ - 15}}{2}} \right) = \frac{{15}}{2}{/tex} ....... (i)
{tex}\alpha \beta \gamma = - \left( {\frac{{ - 30}}{2}} \right) = 15{/tex} ......... (ii)
From (i)
a - d + a + a + d = {tex}\frac{{15}}{2}{/tex} 
So, 3a = {tex}\frac{{15}}{2}{/tex}
a = {tex}\frac{{5}}{2}{/tex}
and From (ii)
a(a - d)(a + d) = 15
So, a(a2 - d2) = 15
{tex}⇒ \frac{{5}}{2}{/tex} {tex}\left[\left(\frac52\right)^2\;-d^2\right]{/tex} = 15
{tex}⇒ \frac{25}4\;-d^2{/tex}= 6
{tex}⇒ \;d^2\;=\;\frac{25}4-6\;{/tex}
{tex}⇒ {d^2} = \frac{1}{4}{/tex}
{tex}⇒ d = \frac{1}{2}{/tex}
Therefore, {tex}\alpha = \frac{5}{2} - \frac{1}{2} = \frac{4}{2} = 2{/tex}
{tex}\beta = \frac{5}{2}{/tex}
{tex}\gamma = \frac{5}{2} + \frac{1}{2} = 3{/tex}.

  • 2 answers

Shivani K 7 years, 6 months ago

9th ki to bhut loose marking hui thi iss baar or 10th m krib 1lakh bcho ki compartment aai thi..

Shivani K 7 years, 6 months ago

9th m ya 10th m
  • 1 answers

Sonali Aggarwal 7 years, 6 months ago

3x + y = -1        *2

-2x + 3y = 19    *3

Using elimination method,

6x + 2y = -2

-6x + 9y = 57

11y=55

y=5

and x= -2

Now since the point of their intersection lies on y= Mx + 3

Substituting values of x and y

5= -2M + 3

M= -1

  • 1 answers

Sonali Aggarwal 7 years, 6 months ago

LCM of 2 numbers is also a multiple of their HCF but in this case 380 is not a multiple of 18 so it is not possible to have 18 HCF and 380 as LCM of 2 numbers.

  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App