No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 2 answers

Rohit Yadav 7 years, 6 months ago

Arithmetic progress

Sujal Choudhary 7 years, 6 months ago

Arithmetic Progression
  • 1 answers

Kunal Rajour 7 years, 6 months ago

9720. You can find the answer by taking LCM of all the numbers then divide 9999 by the LCM and subtract the remainder from 9999.
  • 0 answers
  • 1 answers

Susai Raj 7 years, 6 months ago

Radius of the sector = 6 cm

Angle of the sector (A) = 60°

Area of the sector =( A/360)× πr^2 sq.cm

= (60/360)× π×6×6 square.cm 

=6π square.cm.

 

  • 1 answers

Amol Khatri 7 years, 6 months ago

Total distance=300km let speed=xkm/hr therefore time = d/s = 300/x hr---------------1 new speed=x+5 km/hr therefore time=d/s = 300/x+5 hr-------------2 given difference in times = 2 hrs therefore from 1 and 2 300/x - 300/x+5 = 2 300x+1500-300x/x(x+5) = 2 1500 = 2xsquare + 10x 2x square + 10x - 1500 = 0 x2 + 5x - 750 = 0 x2 + 30x - 25x -750 =0 x(x+30) - 25(x+30) (x+30)(x-25)=0 x+30=0  !     x-25=0     x= -30    !      x = 25  speed cannot be measured in negetive therefore original speed of train is 25 km/hr
  • 1 answers

Kunal Rajour 7 years, 6 months ago

1
  • 1 answers

Kunal Rajour 7 years, 6 months ago

It will have imaginary root. The root is 15 ( ¡ = √-1).
  • 3 answers

Sujal Choudhary 7 years, 6 months ago

The pairs is 5,4;6,3

Kunal Rajour 7 years, 6 months ago

Sorry I thought that the no. will be perfect square. So the probability is 0.

Kunal Rajour 7 years, 6 months ago

1/3
  • 1 answers

Susai Raj 7 years, 6 months ago

When a pair of dice is thrown the set of possible outcomes are...................... {11,12,13,14,15,16,21,22,23,24,25,26,31,32,33,34,35,36,41,42,43,44,45,46,51,52,53,54,55,56,62,62,63,64,65,66}
So n(S) = 36. Let A be the event of getting a sum which is a perfect cube and divisible by 3.
Then A = { }. So n(A) = 0
So. P(A) = n(A)/n(S)
= 0/36 = 0
  • 1 answers

Sia ? 6 years, 6 months ago

Since, any odd positive integer n is of the form 4m + 1 or 4m + 3.

if n = 4m + 1
n2 = (4m + 1)2
= 16m2 + 8m + 1
= 8(2m2 + m) + 1
So n2 = 8q + 1 ........... (i)) (where q = 2m2 + m is a positive integer)

If n = (4m + 3)
n2 = (4m + 3)2
= 16m2 + 24m + 9
= 8(2m2 + 3m + 1) + 1
So n2 = 8q + 1 ...... (ii) (where q = 2m2 + 3m + 1 is a positive integer)

From (i) and (ii) we conclude that the square of an odd positive integer is of the form 8q + 1, for some integer q.

  • 1 answers

Sia ? 6 years, 6 months ago

Check Papers here : <a href="https://mycbseguide.com/cbse-question-papers.html">https://mycbseguide.com/cbse-question-papers.html</a>

  • 2 answers

Amol Khatri 7 years, 6 months ago

38220

Amol Khatri 7 years, 6 months ago

3822p
  • 1 answers

Dattatreya Swain 7 years, 6 months ago

Let the hcf be x Then the lcm is 14x A.T.Q =x+14x=600 =15x=600 =x=600/15 =X=40 If x or hcf=40 Then 14x or lcm=40×14=560 We know Hcf×lcm=product of two numbers 40×560=280×m(let the unknown no be m) m=40×560/280 m=80
  • 1 answers

Sia ? 6 years, 4 months ago

By the given condition of question 
{tex}\sec \theta = x + \frac { 1 } { 4 x }{/tex}
{tex}\therefore \quad \tan ^ { 2 } \theta = \sec ^ { 2 } \theta - 1{/tex}
{tex}\Rightarrow \quad \tan ^ { 2 } \theta = \left( x + \frac { 1 } { 4 x } \right) ^ { 2 } - 1 = x ^ { 2 } + \frac { 1 } { 16 x ^ { 2 } } + \frac { 1 } { 2 } - 1 = x ^ { 2 } + \frac { 1 } { 16 x ^ { 2 } } - \frac { 1 } { 2 } = \left( x - \frac { 1 } { 4 x } \right) ^ { 2 }{/tex}
{tex}\Rightarrow \quad \tan \theta = \pm \left( x - \frac { 1 } { 4 x } \right){/tex}
{tex}\Rightarrow \quad \tan \theta = \left( x - \frac { 1 } { 4 x } \right) \text { or, } \tan \theta = - \left( x - \frac { 1 } { 4 x } \right){/tex}
CASE 1: When {tex}\tan \theta = - \left( x - \frac { 1 } { 4 x } \right) :{/tex} In this case,
{tex}\sec \theta + \tan \theta = x + \frac { 1 } { 4 x } + x - \frac { 1 } { 4 x } = 2 x{/tex}
CASE 2: When {tex}\theta = - \left( x - \frac { 1 } { 4 x } \right) :{/tex} In this case,
{tex}\sec \theta + \tan \theta = \left( x + \frac { 1 } { 4 x } \right) - \left( x - \frac { 1 } { 4 x } \right) = \frac { 2 } { 4 x } = \frac { 1 } { 2 x }{/tex}
Hence, {tex}\sec \theta + \tan \theta = 2 x \text { or } , \frac { 1 } { 2 x }{/tex}

  • 0 answers
  • 0 answers
  • 1 answers

Irfan Alam 7 years, 6 months ago

Every composite number can be expressed in the multiples of its prime factors and this prime factors are unique apart from the order in which they are arranged.This is called the fundamental theorem of arithmetic.
  • 1 answers

Amol Khatri 7 years, 6 months ago

Zeros or roots of the polynomial means a number, a decimal or a fraction when substituted in the place of x in the polynomial the final answer comes 0.
  • 1 answers

Sia ? 6 years, 6 months ago

We know that, Sin30°=(1/2), Cos45°=(1/√2), Sin90°=1, Cos90°=0, Cos0°=1 & tan30°=(1/√3), putting these values in the given expression, we get :-
{tex}{\sin ^2}30^\circ {\cos ^2}45^\circ + 4{\tan ^2}30^\circ + \;\frac{1}{2}{\sin ^2}90^\circ - 2\cos^2 90^\circ + \frac{1}{{24}}{\cos ^2}0^\circ {/tex}
{tex} = {\left( {\frac{1}{2}} \right)^2} \times {\left( {\frac{1}{{\sqrt 2 }}} \right)^2} + 4{\left( {\frac{1}{{\sqrt 3 }}} \right)^2} + \frac{1}{2} \times {\left( 1 \right)^2} - 2 \times {\left( 0 \right)^2} + \frac{1}{{24}}{\left( 1 \right)^2}{/tex}
{tex} = \frac{1}{4} \times \frac{1}{2} + 4 \times \frac{1}{3} + \frac{1}{2} \times 1 - 2 \times 0 + \frac{1}{{24}} \times 1{/tex}
{tex} = \frac{1}{8} + \frac{4}{3} + \frac{1}{2} - 0 + \frac{1}{{24}}{/tex}
{tex} = \frac{{3 + 32 + 12 - 0 + 1}}{{24}}{/tex}
{tex} = \frac{{48}}{{24}} = 2{/tex}

  • 0 answers
  • 5 answers

Amol Khatri 7 years, 6 months ago

And instead of slime it should be salim

Amol Khatri 7 years, 6 months ago

The first part should be thrice

Amol Khatri 7 years, 6 months ago

The question is wrong

Amol Khatri 7 years, 6 months ago

Let Salim's age be x and her daughter's age be y. A.T.Q x-2=3(y-2) =>x-2=3y-6 =>x-3y=-4 eq 1 x+6=2 (y+6)+4 =>x+6=2y+12+4 =>x-2y=10 eq 2 on substracting eq 2 from eq 1- (x-3y)-(x-2y)=-4-10 =>x-3y-x+2y=-14 =>-y=-14 =>y=14 on putting value of y in eq 1- x-(3×14)=-4 =>x-42=-4 =>x=-4+42 =>x=38 Therefore Salim's age is 38 yrs and his daughter's age is 14 yrs.

Rupinder Kaur 7 years, 6 months ago

Answer
  • 1 answers

Sia ? 6 years, 6 months ago

Let ABC be an equilateral triangle and let D be a point on BC such that {tex} B D = \frac { 1 } { 3 } B C.{/tex} Draw {tex} A E \perp B C.{/tex} Join AD.
In {tex}\Delta{/tex}AEB, and {tex}\Delta{/tex}AEC, we have AB = AC,
{tex}\angle{/tex}AEB = {tex}\angle{/tex}AEC = 90°
and, AE = AE
So, by RHS-criterion of similarity, we have

{tex}\Delta{/tex}AEB ~ {tex}\Delta{/tex}AEC
{tex}\Rightarrow{/tex} BE = EC
Thus, we have
{tex}B D = \frac { 1 } { 3 } B C , D C = \frac { 2 } { 3 } B C{/tex} and {tex}B E = E C = \frac { 1 } { 2 } B C{/tex} ...(1)
Since {tex}\angle{/tex} C = 60°. Therefore, {tex}\Delta{/tex}ADC is an acute triangle.
{tex}\therefore \quad A D ^ { 2 } = A C ^ { 2 } + D C ^ { 2 } - 2 D C \times E C{/tex}
{tex}\Rightarrow \quad A D ^ { 2 } = A C ^ { 2 } + \left( \frac { 2 } { 3 } B C \right) ^ { 2 } - 2 \times \frac { 2 } { 3 } B C \times \frac { 1 } { 2 } B C{/tex} [Using(1)]
{tex}\Rightarrow \quad A D ^ { 2 } = A C ^ { 2 } + \frac { 4 } { 9 } B C ^ { 2 } - \frac { 2 } { 3 } B C ^ { 2 }{/tex}
{tex}\Rightarrow \quad A D ^ { 2 } = A B ^ { 2 } + \frac { 4 } { 9 } A B ^ { 2 } - \frac { 2 } { 3 } A B ^ { 2 }{/tex}[{tex}\because{/tex} AB = BC= AC]
{tex}\Rightarrow \quad A D ^ { 2 } = \frac { 9 A B ^ { 2 } + 4 A B ^ { 2 } - 6 A B ^ { 2 } } { 9 } = \frac { 7 } { 9 } A B ^ { 2 }{/tex}
{tex}\Rightarrow{/tex} 9 AD2 = 7AB2
ALITER: Draw {tex}A E \perp B C.{/tex} Triangle ABC is equilateral. Therefore, E is the mid-point of BC.
{tex}\therefore \quad B E = C E = \frac { 1 } { 2 } B C.{/tex}
Applying Pythagoras theorem in right triangles AEB and AED, we obtain
 AB2 = AE2 + BE2 and AD2 = AE2 + DE2
{tex}\Rightarrow{/tex} AB2 - AD2 = (AE2 + BE2) - (AE2 + DE2)
{tex}\Rightarrow{/tex} AB2 - AD2 = BE2 - DE2
{tex}\Rightarrow \quad A B ^ { 2 } - A D ^ { 2 } = \left( \frac { 1 } { 2 } A B \right) ^ { 2 } - \left( \frac { 1 } { 6 } A B \right) ^ { 2 }{/tex} {tex}\left[ \because D E = B E - B D = \frac { 1 } { 2 } A B - \frac { 1 } { 3 } A B = \frac { 1 } { 6 } A B \right]{/tex}
{tex}\Rightarrow \quad A B ^ { 2 } - A D ^ { 2 } = \frac { 2 } { 9 } A B ^ { 2 } \Rightarrow \frac { 7 } { 9 } A B ^ { 2 } = A D ^ { 2 }{/tex}

{tex}\Rightarrow 9 A D ^ { 2 } = 7 A B ^ { 2 }{/tex}

  • 1 answers

Sia ? 6 years, 4 months ago

Let ABC be an equilateral triangle and let D be a point on BC such that {tex} B D = \frac { 1 } { 3 } B C.{/tex} Draw {tex} A E \perp B C.{/tex} Join AD.
In {tex}\Delta{/tex}AEB, and {tex}\Delta{/tex}AEC, we have AB = AC,
{tex}\angle{/tex}AEB = {tex}\angle{/tex}AEC = 90°
and, AE = AE
So, by RHS-criterion of similarity, we have

{tex}\Delta{/tex}AEB ~ {tex}\Delta{/tex}AEC
{tex}\Rightarrow{/tex} BE = EC
Thus, we have
{tex}B D = \frac { 1 } { 3 } B C , D C = \frac { 2 } { 3 } B C{/tex} and {tex}B E = E C = \frac { 1 } { 2 } B C{/tex} ...(1)
Since {tex}\angle{/tex} C = 60°. Therefore, {tex}\Delta{/tex}ADC is an acute triangle.
{tex}\therefore \quad A D ^ { 2 } = A C ^ { 2 } + D C ^ { 2 } - 2 D C \times E C{/tex}
{tex}\Rightarrow \quad A D ^ { 2 } = A C ^ { 2 } + \left( \frac { 2 } { 3 } B C \right) ^ { 2 } - 2 \times \frac { 2 } { 3 } B C \times \frac { 1 } { 2 } B C{/tex} [Using(1)]
{tex}\Rightarrow \quad A D ^ { 2 } = A C ^ { 2 } + \frac { 4 } { 9 } B C ^ { 2 } - \frac { 2 } { 3 } B C ^ { 2 }{/tex}
{tex}\Rightarrow \quad A D ^ { 2 } = A B ^ { 2 } + \frac { 4 } { 9 } A B ^ { 2 } - \frac { 2 } { 3 } A B ^ { 2 }{/tex}[{tex}\because{/tex} AB = BC= AC]
{tex}\Rightarrow \quad A D ^ { 2 } = \frac { 9 A B ^ { 2 } + 4 A B ^ { 2 } - 6 A B ^ { 2 } } { 9 } = \frac { 7 } { 9 } A B ^ { 2 }{/tex}
{tex}\Rightarrow{/tex} 9 AD2 = 7AB2
ALITER: Draw {tex}A E \perp B C.{/tex} Triangle ABC is equilateral. Therefore, E is the mid-point of BC.
{tex}\therefore \quad B E = C E = \frac { 1 } { 2 } B C.{/tex}
Applying Pythagoras theorem in right triangles AEB and AED, we obtain
 AB2 = AE2 + BE2 and AD2 = AE2 + DE2
{tex}\Rightarrow{/tex} AB2 - AD2 = (AE2 + BE2) - (AE2 + DE2)
{tex}\Rightarrow{/tex} AB2 - AD2 = BE2 - DE2
{tex}\Rightarrow \quad A B ^ { 2 } - A D ^ { 2 } = \left( \frac { 1 } { 2 } A B \right) ^ { 2 } - \left( \frac { 1 } { 6 } A B \right) ^ { 2 }{/tex} {tex}\left[ \because D E = B E - B D = \frac { 1 } { 2 } A B - \frac { 1 } { 3 } A B = \frac { 1 } { 6 } A B \right]{/tex}
{tex}\Rightarrow \quad A B ^ { 2 } - A D ^ { 2 } = \frac { 2 } { 9 } A B ^ { 2 } \Rightarrow \frac { 7 } { 9 } A B ^ { 2 } = A D ^ { 2 }{/tex}

{tex}\Rightarrow 9 A D ^ { 2 } = 7 A B ^ { 2 }{/tex}

  • 0 answers
  • 1 answers

Yuv Raj 7 years, 6 months ago

150,200,250,300,350,400,450,500................☺

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App