No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 0 answers
  • 0 answers
  • 1 answers

Aman Kumar 7 years, 6 months ago

The no is uniquely divide and have no excutee no is show common factors
  • 1 answers

Vishal Pratap Singh Vishal 7 years, 6 months ago

Yes NCERT is sufficient for 10th board exam. if you want more practice may purchase NCERT examplears .Make notes and start revising .make accurate notes revis as many times you can till examination .
  • 1 answers

Vishal Pratap Singh Vishal 7 years, 6 months ago

Sin48 = cos42 Using sinA = cos (90-A) Cos48 = sin42 Using cosA= sin(90-A) Now back to question cos42.sec42 + sine42.cosec42 Cos42.cos42+sine42.sine42 ANS= 1
  • 0 answers
  • 2 answers

Shubham Kumar 7 years, 6 months ago

360000

Dj Pagal 7 years, 6 months ago

LC M of 24,15,36
  • 3 answers

Shubham Kumar 7 years, 6 months ago

A = 2. & B = 1

Priyanshu Kashyap 7 years, 6 months ago

Solve this

Ankita ?? Arpita☺️ 7 years, 6 months ago

b=1or2 thenu find a and a^2+b^2&a^2-b^2
  • 1 answers

Sia ? 6 years, 6 months ago

Suppose that the digits at units and tens place of the given number be x and y respectively.
Thus, the number is {tex}10y + x.{/tex}
The product of the two digits of the number is 20.
Thus, we have {tex}xy = 20{/tex}
After interchanging the digits, the number becomes {tex}10x + y{/tex}
If 9 is added to the number, the digits interchange their places.
Thus, we have
{tex}(10y + x) + 9 = 10x + y{/tex}
{tex}\Rightarrow{/tex} {tex}10y + x + 9 = 10x+ y{/tex}
{tex}\Rightarrow{/tex} {tex}10x + y - 10y - x = 9{/tex}
{tex}9x - 9y = 9{/tex}
{tex}\Rightarrow{/tex}{tex} 9(x - y) = 9{/tex}
{tex}\Rightarrow x - y = \frac{9}{9}{/tex}
{tex}\Rightarrow{/tex} {tex}x - y = 1{/tex}
So, we have the systems of equations
{tex}xy = 20,{/tex}
{tex}x - y = 1{/tex}
Here x and y are unknowns.
We have to solve the above systems of equations for x and y.
Substituting {tex}x = 1 + y{/tex}
from the second equation to the first equation, we get {tex}(1+ y) y = 20{/tex}
{tex}\Rightarrow{/tex} {tex}y + y^2 = 20{/tex}
{tex}\Rightarrow{/tex} {tex}y^2 + y - 20 = 0{/tex}
{tex}\Rightarrow{/tex} {tex}y^2 + 5y - 4y - 20 = 0{/tex}
{tex}\Rightarrow{/tex} {tex}y(y + 5) - 4(y + 5) = 0{/tex}
{tex}\Rightarrow{/tex} {tex}(y + 5)\ or\ (y - 4) = 0{/tex}
{tex}\Rightarrow{/tex} {tex}y = -5\ or\ y = 4{/tex}
Substituting the value of y in the second equation, we have

x -5 4
y -4 5

Hence, the number is 10 {tex}\times{/tex} 4 + 5 = 45 Note that in the first pair of solution the values of x and y are both negative.
But the digits of the number can't be negative. So, we must remove this pair.

  • 3 answers

Shubham Kumar 7 years, 6 months ago

SIN THETA

Ankita ?? Arpita☺️ 7 years, 6 months ago

Tan theta=sin/cos Sin/cos×cos =sintheta

Shiva Yadav Shiva Yadav 7 years, 6 months ago

Sin theta
  • 1 answers

Ankita ?? Arpita☺️ 7 years, 6 months ago

Ncert book ki page -175 me he
  • 1 answers

Sia ? 6 years, 6 months ago

If g(x)=x2 + 2x + k is a factor of  f(x) = 2x4 + x3 - 14x2 + 5x + 6

Then remainder is zero when f(x) is divided by g(x)

Let quotient =Q and remainder =R
Let us now divide f(x) by gx)

R = x(7k + 21) + (2k2 + 8k + 6) -------(1)

and  Q = 2x2 - 3x - 2(k + 4).------------(2)
{tex}\Rightarrow{/tex}x (7k + 21) + 2 (k2 + 4k + 3) = 0 
{tex}\Rightarrow{/tex}7k + 21 = 0 and k2 + 4k + 3 = 0
{tex}\Rightarrow{/tex} 7(k + 3) = 0 and (k + 1) (k + 3) = 0
{tex}\Rightarrow{/tex} k + 3 = 0
{tex}\Rightarrow{/tex}k = -3
Substituting the value of k in the divider x2 + 2x + k, we obtain: x2 + 2x - 3 = (x + 3) (x - 1) as the divisor.
Hence two zeros of g(x) are -3 and 1.------(3)
Putting k=-3 in (2) we get
Q = 2x2 - 3x - 2
= 2x2 - 4x + x - 2
= 2x(x - 2) + 1 (x - 2)
= (x - 2)(2x + 1)

Q=0 if x-2=0 or 2x+1=0
So other two zeros of f(x) are 2 and -{tex}\frac12{/tex}-------(4)

As g(x) is a factor of f(x) so zeros of G(x) are zeros of f(x) also

Hence from (3) and (4) we get
The zeros of f(x) are: -3 ,1,, 2 and  {tex}\frac12{/tex}

  • 2 answers

Samit Gautam 7 years, 6 months ago

Let a=6q+r Where 0<r<6 Put r=1,2,3,4,5 A=6q+1 A=6q+2 A=6q+3 A=6q+4 A=6q+5 So write odd integers.. 6q+1,6q+3,6q+5

Rahil Aziz 7 years, 6 months ago

By using euclid's division lemma N = 6q +r if o <r> b Than possible value of r is 0 1 2 3 4 5 Than putting in euclid division lemma After solving In case 1 (6q + 0) squaring, use this identity a2+ b2 + 2ab
  • 6 answers

Shubham Kumar 7 years, 6 months ago

3x2 + x - 16

Ankita ?? Arpita☺️ 7 years, 6 months ago

3x^2-11x-4

Vivek Kohli 7 years, 6 months ago

3x(x-4)+1(x-4) 3x^2-12x+x-4 3x^2-11x-4

Rahil Aziz 7 years, 6 months ago

Multiple by 1st equation to 2 equation

Samit Gautam 7 years, 6 months ago

3x²-11x-4

Khushi Sahu 7 years, 6 months ago

Solutions
  • 2 answers

Ankita ?? Arpita☺️ 7 years, 6 months ago

Prakhar 3to the power1/2 question hai But.... Tumne3×1/2 kia

Piyush Gautam 7 years, 6 months ago

rational no. can be written in the form of p/q. it 3/2 also written in the form of p/q. so it is a rational.. I hope you like it...
  • 1 answers

Nishita Tomar 7 years, 6 months ago

I think there's something wrong in question and where is shaded region
  • 1 answers

Sia ? 6 years, 6 months ago


Area of quadrilateral ABCD = ar {tex}\triangle{/tex}ABD + ar {tex}\triangle{/tex}BCD
ar {tex}\triangle{/tex}ABD = {tex}\frac 12{/tex}[ 1(- 3 - 21) + 7(21 - 1) + 7(1 + 3)]
{tex} \frac { 1 } { 2 } [ - 24 + 7 \times 20 + 7 \times 4 ]{/tex}
{tex}= \frac { 1 } { 2 } {/tex}[-24 + 140 + 28]
{tex}= \frac { 1 } { 2 } \times 144{/tex} = 72 sq. units
ar {tex}\triangle{/tex}BCD
{tex}\frac { 1 } { 2 }{/tex}[7(2 - 21) + 12(21 + 3) + 7(-3 - 2)]
{tex}\frac { 1 } { 2 } [ 7 \times - 19 + 12 \times 24 + 7 \times - 5 ]{/tex}
{tex}\frac12{/tex}[-133 + 288 - 35]
{tex}\frac 12{/tex}[288 - 168]
{tex}= \frac { 1 } { 2 } \times 120{/tex}
= 60 sq. units
Hence, Area Quadrilateral ABCD = 72 + 60 = 132 sq units

  • 0 answers
  • 1 answers

Sia ? 6 years, 6 months ago

n- n = n (n- 1) = n (n - 1) (n + 1) 
Whenever a number is divided by 3, the remainder obtained is either 0 or 1 or 2.
∴ n = 3p or 3p + 1 or 3p + 2, where p is some integer.
If n = 3p, then n is divisible by 3.
If n = 3p + 1, then n – 1 = 3p + 1 –1 = 3p is divisible by 3.
If n = 3p + 2, then n + 1 = 3p + 2 + 1 = 3p + 3 = 3(p + 1) is divisible by 3.
So, we can say that one of the numbers among n, n – 1 and n + 1 is always divisible by 3.
⇒ n (n – 1) (n + 1) is divisible by 3.
Similarly, whenever a number is divided by 2, the remainder obtained is 0 or 1.
∴ n = 2q or 2q + 1, where q is some integer.
If n = 2q, then n is divisible by 2.
If n = 2q + 1, then n – 1 = 2q + 1 – 1 = 2q is divisible by 2 and n + 1 = 2q + 1 + 1 = 2q + 2 = 2 (q + 1) is divisible by 2.
So, we can say that one of the numbers among n, n – 1 and n + 1 is always divisible by 2.
⇒ n (n – 1) (n + 1) is divisible by 2.
Since, n (n – 1) (n + 1) is divisible by 2 and 3.
∴ n (n-1) (n+1) = n- n is divisible by 6.( If a number is divisible by both 2 and 3 , then it is divisible by 6) 
 

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App