No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Siddhant Singh 7 years, 6 months ago

root3 + root5 is not a rational number. (Prove this yourself) Now since root3 + root5 is not a rational number therefore it's not a prime number
  • 0 answers
  • 2 answers

Shubham Kumar 7 years, 6 months ago

Given:. x+y=0 and x × y=-3/5. The quadratic equations formula is. X^2-(sum of zero)x +(product of zero) X^2 -0x + (-3/5). X^2-0x-3/5 5X^2/5 -0x/5 -3/5=0. Therefore p(x)=5X^2 -0X -3. Or, 5X^2-3

Ankit Kumar 7 years, 6 months ago

5X² - 3
  • 3 answers

Dheeraj Chander 7 years, 6 months ago

-

Shubham Kumar 7 years, 6 months ago

-

Anurag Singh 7 years, 6 months ago

_
  • 1 answers

Shubham Kumar 7 years, 6 months ago

Cos60°=1/2. ,sec 60°=2. ,tan 45°=1. (1/2)^2 + 4(2)^2 - (1)^2=1/4 + 16 - 1=1/4 +64/4 - 4/4= 61/4 .
  • 2 answers

Siddhant Singh 7 years, 6 months ago

(a+b)^2-2ab

Anurag Singh 7 years, 6 months ago

C^2
  • 1 answers

Account Deleted 7 years, 6 months ago

867=225*3+192 225=192*1+33 192=33*5+27 33=27*1+6 27=6*4+3 6=3*2+0 Therefore hcf of 867 and 225 is 3
  • 1 answers

Kannu Kranti Yadav 7 years, 6 months ago

Which subject
  • 6 answers

Bakul Gupta 7 years, 6 months ago

0

Suhani Srivastava 7 years, 6 months ago

0

Subhroneel Das 7 years, 6 months ago

0

Abhishek Minhas 7 years, 6 months ago

6

Abhishek Minhas 7 years, 6 months ago

5-(1x 2) +4/2+1 5-(2)+2+1 5-2+3 3+3 6

Anusuya Kulothungan 7 years, 6 months ago

1
  • 2 answers

Shivani K 7 years, 6 months ago

100-9x²) (10²-9x²)(10x²-3x²) (a²-b²=(a+b)(a-b) a=10&b=3x. (10+3x) (10-3x) multiply 3 by -1 to get -3 (10+3x) (10-3x)...?

Mukesh Gaur 7 years, 6 months ago

100-9x^2 =10^2-(3x)^2 =(10+3x)(10-3x)
  • 4 answers

Shivani K 7 years, 6 months ago

Ok thanx i'll check it

Shubham Kumar 7 years, 6 months ago

a=5 ,y=-2. Sorry for previous answer I done silly mistake of sign there so check it

Shubham Kumar 7 years, 6 months ago

Let 1/x= a then , 4/x= 4a,3/x=3a Then our equations are. 4a+3y=14 and 3a-4y= 23 by substitution method we get ,a=(14-3y)/4....(1) by putting the value of 'a' on another eq. We get 3a-4y=23. ,3{(14-3y)/4}-4y=23 ,(42-9y-16y)/4=23. 42-25y=92 .25y=-92+42. Therefore, -y=-50/25. Y=2,. Again in eq. (1). a=(14-3y)/4 =(14-6)/4, a=8/4 =2 So a =2 ,y= 2.

Shivani K 7 years, 6 months ago

Guyz plz solve this ques
  • 1 answers

Shubham Kumar 7 years, 6 months ago

TanA=√3/1. We know TanA=p/b Then,p=√3,b=1,h=√(√3)^2+(1)^2 Therefore,h=2. SinA=p/h=√3/2,cosA=b/h=1/2,cotA=b/p=1/√3,secA=h/b=2/1,cosecA=h/p=2/√3.
  • 0 answers
  • 1 answers

Sia ? 6 years, 6 months ago

{tex}(a + b)^2x^2 + 8(a^2 - b^2)x + 16(a - b)^2 = 0{/tex}
{tex}A = (a + b)^2,\ B = 8(a^2 - b^2),\ C = 16(a - b)^2 {/tex}
D = B2 - 4AC
= [8(a2 - b2)]2 - 4 {tex}\times{/tex} (a + b)216(a - b)2 
= 64(a2 - b2)2 - 64(a2 - b2)2 = 0
{tex}\therefore{/tex}x = {tex}\frac{-B}{2A}{/tex} = {tex}\frac { - 8 \left( a ^ { 2 } - b ^ { 2 } \right) } { 2 ( a + b ) ^ { 2 } }{/tex} = {tex}\frac { - 4 ( a - b ) } { a + b }{/tex}

  • 1 answers

Sia ? 6 years, 4 months ago

Let us assume, to the contrary, that √p is rational.
So, we can find co-prime integers a and b(b ≠ 0)
{tex}\begin{array}{l}\sqrt p=\frac ab\\\end{array}{/tex}
{tex}a = b _ { \sqrt { P } }{/tex}
on squaring both sides we get
a2 = pb2 ...... (1)
so a2 is divisible by p
hence a is divisible by p ....... (2)
So, we can write a = pc for some integer c.
Squaring both the sides we get
a2 = p2 c2 ....
⇒ pb2 = p2 c2 ....[From (1)]
⇒ b2 = pc2
⇒ b2 is divisible by p
⇒ b is divisible by p ....... (3)
From (2) and (3) we conclude that p divides both a and b.
∴ a and b have at least p as a common factor.
But this contradicts the fact that a and b are co-prime. (As per our assumption)
This contradiction arises because we have assumed that √p is rational.
∴ √p is irrational.

  • 3 answers

Priyanshu Kumar 7 years, 6 months ago

It depends upon the creators of board paper s

Kannu Kranti Yadav 7 years, 6 months ago

Approx 90%

Shiva Yadav Shiva Yadav 7 years, 6 months ago

About 60%
  • 3 answers

Dheeraj Chander 7 years, 6 months ago

If u had do N.C.E.R.T very well and know all about it then u r. to able to do any questions

Shiva Yadav Shiva Yadav 7 years, 6 months ago

N

Kannu Kranti Yadav 7 years, 6 months ago

Of course ncert is best to score good marks
  • 1 answers

Aditya Madeshiya 7 years, 6 months ago

2
  • 2 answers

Subhroneel Das 7 years, 6 months ago

minus 6

Eshika Pawar 7 years, 6 months ago

16.5
  • 1 answers

Sia ? 6 years, 6 months ago

Let the required number be (a - 3d), (a - d), (a + d) and (a + 3d)
Sum of these numbers = (a - 3d) + (a - d)+ (a + d) + (a + 3d)
According to the question, sum of the numbers=32
{tex}\therefore{/tex}4a = 32 {tex}\Rightarrow{/tex} a = 8
Sum of the squares of these numbers
=(a-3d)2+(a-d)2+(a+d)2+(a+3d)2=4(a2+5d{tex}^2{/tex})
N
ow, sum of the squares of numbers=336
{tex}\therefore{/tex}4(a2+5d2)=336
{tex}\Rightarrow{/tex}a2+5d2=84 [{tex}\because {/tex}a=8]
{tex}\Rightarrow{/tex}5d2= 84-64
{tex}\Rightarrow{/tex}5d2=20
{tex}\Rightarrow{/tex}d2=4
{tex}\Rightarrow{/tex}d={tex} \pm {/tex}2
Hence, the required numbers (2, 6, 10, 14).

  • 1 answers

Pratysh Padhan 7 years, 6 months ago

3x+6 =3x-4;=6+4=10

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App