No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Sia ? 6 years, 6 months ago

Prime Factorisation method-
Express each one of the given numbers as the product of prime factors.
The product of least powers/index of common prime factors gives H.C.F.
Find the H.C.F. of 8 and 14 by Prime Factorisation method.
Solution: 8 = 2 x 2 x 2 and 14 = 2 x 7
Common factor of 8 and 14 = 2.
Thus, Highest Common Factor (H.C.F.) of 8 and 14 = 2.

  • 1 answers

Akshay Singh 7 years, 5 months ago

Which book
  • 1 answers

Sia ? 6 years, 6 months ago

f(x) = x4 + 4x2 + 5

= (x2)2 + 4x2 + 5
Let x2 =n,
Then, f(x) = n2 + 4n + 5,

Here a=1,b=4,c=5

The discriminant(D) = {tex}\text{b}^2-4\mathrm{ac}=\;(4)^2-4\times1\times5=16-20=-4{/tex}

Since the discriminant is negative so this polynomial has no zeros

Hence, f(x) = x4 + 4x2 + 5 has no zero.

  • 1 answers

Sia ? 6 years, 6 months ago

Let p(x) ={tex} x^3 + 2x^2 + kx + 3{/tex}
Now, x - 3 = 0
 {tex}\Rightarrow{/tex} x = 3
By the remainder theorem, we know that when p(x) is divided by (x - 3), the remainder is p(3).
Now, p(3) = (3)3 + 2(3)2 + k(3) + 3
= 27 + 2(9) + 3k + 3
= 30 + 18 + 3k 
= 48 + 3k
But, remainder = 21
 {tex}\Rightarrow{/tex} 48 + 3k = 21
{tex}\Rightarrow{/tex} 3k = 21 - 48
{tex}\Rightarrow{/tex} 3k = -27
{tex}\Rightarrow{/tex} k = {tex}\frac{-27}3{/tex}
{tex}\Rightarrow{/tex} k = -9
So, the value of k is -9.

  • 1 answers

Muhammad Junaid Ahmed 7 years, 5 months ago

given a3=15,S10=125,find d and a10
  • 1 answers

Sia ? 6 years, 6 months ago

In statistics, an ogive is a graph showing the curve of a cumulative distribution function. The points plotted are the upper class limit and the corresponding cumulative frequency. The ogive for the normal distribution, resembles one side of an Arabesque or ogival arch.

  • 1 answers

Sia ? 6 years, 6 months ago

We have,
{tex}x + 2y - 4=0{/tex}

Putting {tex}y = 0{/tex}, we get
{tex}x + 0 - 4 = 0{/tex}

{tex} \Rightarrow {/tex} {tex}x = 4{/tex}
Putting x = 0, we get
{tex}0 + 2y - 4 = 0{/tex}

{tex} \Rightarrow {/tex} {tex}y = 2{/tex}
Thus, two solutions of equation {tex}x + 2y - 4 = 0{/tex} are:

x 4 0
y 0 2

We have, 
{tex}2x + 4y - 12 = 0{/tex}
Putting {tex}x = 0{/tex}, we get
{tex}0 + 4y - 12 = 0{/tex}

{tex} \Rightarrow {/tex} {tex}y = 3{/tex}
Putting {tex}y = 0{/tex}, we get
{tex}2x + 0(12) = 0{/tex}

{tex} \Rightarrow {/tex} x = 6
Thus, two solutions of equation {tex}2x + 4y - 12 = 0{/tex} are:

x 0 6
y 3 0

Now, we plot the points A (4, 0) and B (0, 2) and draw a line passing through these two points to get the graph of the line represented by the equations (i).
We also plot the points P (0, 3) and Q (6, 0) and draw a line passing through these two points to get the graph of the line represented by the equation (ii).
We observe that the lines are parallel and they do not intersect any where.

REMARK The graphical representation of the above pair of linear equations provides us a pair of parallel lines.
Let us write the pair of linear equations,
{tex}x + 2y - 4 = 0{/tex}
{tex}2x + 4y -12 = 0{/tex}
as {tex}a_1x + b_1y + c_1=0{/tex}
{tex}a_2x + b_2y +c_2 =0{/tex}
where {tex}a_1=1, b_1= 2, c_1 = -4{/tex},

{tex}a_2 = 2, b_2 = 4\ and \ c_2 = -12{/tex}
{tex}\frac { a _ { 1 } } { a _ { 2 } } = \frac { 1 } { 2 } , \frac { b _ { 1 } } { b _ { 2 } } = \frac { 2 } { 4 } = \frac { 1 } { 2 } \text { and } \frac { c _ { 1 } } { c _ { 2 } } = \frac { - 4 } { - 12 } = \frac { 1 } { 3 }{/tex}
{tex}\therefore \quad \frac { a _ { 1 } } { a _ { 2 } } = \frac { b _ { 1 } } { b _ { 2 } } \neq \frac { c _ { 1 } } { c _ { 2 } }{/tex}
will represent parallel lines, if
{tex}\frac { a _ { 1 } } { a _ { 2 } } = \frac { b _ { 1 } } { b _ { 2 } } \neq \frac { c _ { 1 } } { c _ { 2 } }{/tex}
The converse is also true for any pair of linear equations.
It follows from the above examples that the pair of linear equations
{tex}a_1x + b_1y + c_1 = 0{/tex}
{tex}a_2x + b_2y +c_2=0{/tex}
will represent:

  1. intersecting lines, if {tex}\frac { a _ { 1 } } { a _ { 2 } } \neq \frac { b _ { 1 } } { b _ { 2 } }{/tex}
  2. coincident lines, if {tex}\frac { a _ { 1 } } { a _ { 2 } } = \frac { b _ { 1 } } { b _ { 2 } } = \frac { c _ { 1 } } { c _ { 2 } }{/tex}
  3. parallel lines, if {tex}\frac { a _ { 1 } } { a _ { 2 } } = \frac { b _ { 1 } } { b _ { 2 } } \neq \frac { c _ { 1 } } { c _ { 2 } }{/tex}
  • 3 answers

Swatantra Tyagi 7 years, 5 months ago

swatantra

Prachi Tiwari 7 years, 5 months ago

Jahjhsjojabavvaa

Durga Verma 7 years, 5 months ago

????
  • 3 answers

Aman Bhatt 7 years, 5 months ago

Aap sharukh khan h kya

Shahruk Khan 7 years, 5 months ago

30

Vijay Kumar 7 years, 5 months ago

Not posible
  • 0 answers
  • 0 answers
  • 0 answers
  • 0 answers
  • 1 answers

Sia ? 6 years, 6 months ago

Get revision notes from here : <a href="https://mycbseguide.com/cbse-revision-notes.html">https://mycbseguide.com/cbse-revision-notes.html</a>

  • 3 answers

Prachi Tiwari 7 years, 5 months ago

2019 .. next batch of class 10th???

Rajiv Ranjan 7 years, 5 months ago

???

Durga Verma 5 years, 8 months ago

Half nhi hoga whole course aayega final me
  • 6 answers

Durga Verma 7 years, 5 months ago

Hii shriya from where r u ???

Priyanka Chaurasiya 7 years, 5 months ago

97

Ayush Tomar 7 years, 5 months ago

97

Akshay Singh 7 years, 5 months ago

97

Depreciation Poli Bros 7 years, 5 months ago

5+2=7 and 5+4=9 so its 97

Shrish Kashyap 5 years, 8 months ago

97
  • 0 answers
  • 1 answers

Jagannath Acharya 7 years, 5 months ago

SecA+cosecA(sinA+cosA-1)(sinA+cosA+1)=(sin^2A+cos^A+2sinAcosA-1)(secA+cosecA)=(1+2sinAcosA-1)(secA+ cosecA)={2sinAcosA×(1/cosA)}+{2sinAcosA×(1/cosA)}=2sinA+2cosA=2(sinA+cosA)=2m
  • 1 answers

Durga Verma 7 years, 5 months ago

10 bje online aana okk
  • 1 answers

Sia ? 6 years, 6 months ago

A.P. is  17,14,11,..., - 40
We have,
l = Last term = -40 , a = 17 and, d = Common difference= 14 - 17 = - 3
{tex}\therefore{/tex} 6th term from the end = l - (n -1)d
= l - (6-1) d
= -40 - 5 {tex}\times{/tex} (-3 )
= -40 + 15
= -25
So, 6th term of given A.P. is -25.

  • 1 answers

Depreciation Poli Bros 7 years, 5 months ago

Its NCERT

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App