No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Sia ? 6 years, 6 months ago

composite two digit number = 99
and coprime two digit number are 12 and 13

  • 1 answers

Abhishek Chaudhary 7 years, 5 months ago

296
  • 1 answers

Mahanta Bhagat 7 years, 5 months ago

Let the digit at tens place be x and the digit at ones place be y. So, the no.is 10x+y Sum of its digits is x+y So, the divisor is x+y And, quotient is 7 And, remainder is 0 So, by euclid's division lemma, 10x+y=(x+y)×7+0 or, 10x+y=7x+7y or, 3x-6y=0 or, x-2y=0-------------------------------------------------(1) And, according to question, (10x+y)-27=10y+x or, 10x+y-27=10y+x or, 10x-x+y-10y=27 or, 9x-9y=27 or, x-y=3--------------------------------------------------(2) Subtracting (1) from( 2) x-y-x+2y=3-0 or, y=3 Putting y=3 in (2) x=6 So,. x=6 y=3. So, the no. is 63.
  • 1 answers

Rupal ???? 7 years, 5 months ago

68 is not the term of given AP
  • 0 answers
  • 1 answers

Angel Chaubey 7 years, 5 months ago

If 2 is added to the polynomial..... x²-5x+4+2=x²-5x+6 x²-3x-2x+6 =x(x-3)-2(x-3) (x-3)(x-2) =x=3,2
  • 2 answers

Ankita ?? Arpita☺️ 7 years, 5 months ago

Please yogita prove √5 is an iirational

Yogita Ingle 7 years, 5 months ago

Given √2 is irrational number.
Let √2 = a / b wher a,b are integers b ≠ 0
we also suppose that a / b is written in the simplest form
Now √2 = a / b
⇒ 2 = a2 / b2 
⇒   2b2 = a2
∴ 2b2 is divisible by 2
⇒  a2 is divisible by 2    
⇒  a is divisible by 2  
∴ let a = 2c
a2 = 4c2
⇒ 2b2 = 4c2
⇒ b2 = 2c2
∴ 2c2  is divisible by 2
∴ b2  is divisible by 2
∴ b  is divisible by 2
∴ a are b   are  divisible by 2 .
This contradicts our supposition that a/b is written in the simplest form.
Hence our supposition is wrong
∴ √2 is irrational number.

  • 1 answers

Angel Chaubey 7 years, 5 months ago

(x+2√2)(x+3√2)
  • 0 answers
  • 0 answers
  • 6 answers

Aabith $ 7 years, 5 months ago

-5/2

Diwakar Kumar 7 years, 5 months ago

-5/2

Varsha Yadav 7 years, 5 months ago

-5/2

Anchal Singh 7 years, 5 months ago

-2.5

Pratima Bhagat 7 years, 5 months ago

-5/2

G.Mani Kanta 7 years, 5 months ago

-5/2
  • 2 answers

Kannu Kranti Yadav 7 years, 5 months ago

Surely,by hard work and by taking less or no holiday

Aryan Kaushik 7 years, 5 months ago

Yes.but dont take any holiday now onwards
  • 1 answers

G.Mani Kanta 7 years, 5 months ago

We know that √5 and √3 and √2 are irrational numbers
  • 0 answers
  • 1 answers

Sia ? 6 years, 6 months ago


Given : In {tex}\Delta A B C \text { and } \Delta P Q R{/tex}  The AD and PM are their medians,
such that {tex}\frac { A B } { P Q } = \frac { A D } { P M } = \frac { A C } { P R }{/tex}
To prove : {tex}\Delta A B C \sim \Delta P Q R{/tex}
Construction : Produce AD to E such that AD = DE and produce PM to N such that PM = MN. Join CE and RN.
Proof : In {tex}\Delta A B D \text { and } \Delta E D C{/tex} 
{tex}AD=DE{/tex} 
{tex}\angle A D B = \angle E D C{/tex} (vertically opposite angles)
{tex}BD=DC\text{(as AD is a median)}{/tex}  
{tex}\therefore \quad \Delta A B D \equiv \Delta E D C{/tex} (By SAS congruency)
or, {tex}AB=CE{/tex} (By CPCT)
Similarly, PQ = RN  {tex}{/tex}
{tex}\frac { A B } { P Q } = \frac { A D } { P M } = \frac { A C } { P R }{/tex} (Given)
or, {tex}\frac { C E } { R N } = \frac { 2 A D } { 2 P M } = \frac { A C } { P R }{/tex}
or {tex}\frac{CE}{RN}=\frac{AE}{PN}=\frac{AC}{PR}{/tex}
So {tex}∆ACE \sim ∆PRN{/tex} 
{tex}\angle 3=\angle 4{/tex}
Similarly {tex}\angle 1=\angle 2{/tex} 
{tex}\angle 1+\angle3=\angle2+\angle4{/tex}
So {tex}\angle A=\angle P\text{ and}{/tex} 
{tex}\frac{AB}{PQ}=\frac{AC}{PR}\text{(given)} {/tex}
Hence {tex}∆ABC\sim ∆PQR{/tex}

  • 1 answers

R T 7 years, 5 months ago

3+2√5=a/b 2√5=a/b-3 √5=a/2b-3 =RHS is rational Let us assume that √5 is rational Then √5=p/q Also P&q are co primes Squaring on both sides 5 divides p and q This contractions arises due to our wrong assumption that √5 is rational =√5 is rational
  • 2 answers

Anchal Singh 7 years, 5 months ago

Plz explain saurabh

Saurabh Kumar 7 years, 5 months ago

VsnamK
  • 0 answers
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App