No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 2 answers

Mumaiz Peer 7 years, 5 months ago

122255567

Vineet Gulia 7 years, 5 months ago

122255567
  • 3 answers

Anwaya Kumar Nayak 7 years, 5 months ago

Cos A=b/h=4/3

Siddhu Kumar 7 years, 5 months ago

3cotA=4 So,cotA=3/4=b/p H=? H=5 CosA=b/h=3/5 SinA=p/h=4/5 Value=cosA-sinA =3/5-4/5 =-1/5 Where b is base ,p is perpendicular and h is hypotenuse

Anwaya Kumar Nayak 7 years, 5 months ago

CotA=4/3, then h=5 so cos a -sin a=1/5
  • 1 answers

Kunal Singh 7 years, 5 months ago

2
  • 2 answers

Anwaya Kumar Nayak 7 years, 5 months ago

Sorry friend its 29×91= 2639

Anwaya Kumar Nayak 7 years, 5 months ago

LCM will 2639 and HCF is 1.So 26×91=2639
  • 1 answers

Sia ? 6 years, 6 months ago

Given numbers are 184, 230, and 276.
Applying Euclid's division lemma to 184 and 230, we get
230 = 184 {tex}\times{/tex} 1 + 46
184 = 46 {tex}\times{/tex} 4 + 0
The remainder at this stage is zero.
So, the divisor at this or the remainder at the previous stage i.e., 46 is the HCF of 184 and 230.
Also,
276 = 46 {tex}\times{/tex} 6 + 0
∴  HCF of 276 and 46 is 46
HCF (184, 230,  276) = 46
Hence, the required HCF of 184, 230 and 276 is 46.

  • 1 answers

Sia ? 6 years, 6 months ago

Get formulae in revision notes : <a href="https://mycbseguide.com/cbse-revision-notes.html">https://mycbseguide.com/cbse-revision-notes.html</a>

  • 1 answers

Sia ? 6 years, 6 months ago

an = a + (n - 1)d
a7 = a + (7 - 1)d
a + 6d = 4
a + 6(-4) = 4
{tex}\Rightarrow{/tex} a = 28

  • 1 answers

Priyan Agrawal 7 years, 5 months ago

The factors of 12 are 1,2,3,4,6,12 So to end with 0 the 5 is also required as a factor Since 12 does not have 5 as a factor Do there is no natural no.that end with 0
  • 0 answers
  • 1 answers

Vineeta Kumari 7 years, 5 months ago

There must be  another number too

  • 2 answers

Jhasketan Behera 7 years, 5 months ago

225 = 135×1+90, 135=90×1+45, 90=45×2+0 hence the hcf is = 45

Jhasketan Behera 7 years, 5 months ago

225=135 × 1 +90 135=90 × 1 +45 90=45 × 2 + 0 hence hcf = 45 did you got that vaishali
  • 1 answers

Prabjeet Singh 7 years, 5 months ago

{tex}\text {Let when } p(x) \text { is divided by } (x-2)(x-3) \text { it leaves a remainder } (ax-b) \text { quotient } g(x),{/tex}

{tex}\therefore p(x) = (x-2)(x-3)g(x)+(ax+b){/tex}            {tex}...(1){/tex}

{tex}\text {Now, when } p(x) \text {is divided by } (x-2) \text {it leaves a remainder 1,}{/tex}

{tex}\therefore \text {putting value } x=2 \text { in eqn. (1), we get}{/tex}

{tex}p(2) = (2-2)(2-3)g(2)+[a(2)+b]{/tex}

{tex}\Rightarrow 1 = 0+2a+b{/tex}

{tex}\Rightarrow 2a+b=1{/tex}         {tex}...(2){/tex}

{tex}\text {And, when } p(x) \text { is divided by } (x-3) \text { it leaves a remainder 3},{/tex}

{tex}\therefore \text { putting value } x = 3 \text { in eqn. (1), we get}{/tex}

{tex}p(3) = (3-2)(3-3)g(3)+[a(3)+b]{/tex}

{tex}\Rightarrow 3 = 0 + 3a +b{/tex}

{tex}\Rightarrow 3a+b=3{/tex}         {tex}...(3){/tex}

{tex}\text {On solving, eqn. (2) and (3), we get}{/tex}

{tex}a=2 \text { and } b = -3{/tex}

{tex}\text {Putting values of } a \text { and } b \text { in eqn. (1), we get}{/tex}

{tex}p(x) = (x-2)(x-3)+(2x-3){/tex}

{tex}\text {Thus, the required remainder is }(2x-3).{/tex}

  • 2 answers

Prabjeet Singh 7 years, 5 months ago

HCF = 16,

Product of Numbers = 3072

According to formula, if a and b are two given numbers, then

{tex}HCF(a, b) \times LCM(a, b) = a \times b{/tex}

{tex}16 \times LCM(a,b)=3072{/tex}

{tex}LCM(a,b)=\cfrac {3072}{16}{/tex}

{tex}LCM(a,b)=192{/tex}

Sanjna Bhadouriya 7 years, 5 months ago

192
  • 1 answers

Pratibha K 7 years, 5 months ago

829
  • 5 answers

Aryan Rawat 7 years, 5 months ago

Here -20 is correct

Aastha Sharma 7 years, 5 months ago

I hope it may help u

Aastha Sharma 7 years, 5 months ago

d=4 a7=4 a=? a7=a +(n-1)d 4=a+6(4) A=-20

Vaibhav Arora 7 years, 5 months ago

16

Sandeep Saini 7 years, 5 months ago

24
  • 0 answers
  • 1 answers

Sia ? 6 years, 6 months ago

Let the denominator be y, then numerators = y - 3

So the fraction be  {tex}\frac { y - 3 } { y }{/tex} 

By the given condition, new fraction = {tex}\frac { y - 3 + 2 } { y + 2 }{/tex}

{tex}= \frac { y- 1 } { y+ 2 }{/tex}

{tex}\frac { y - 3 } { y } + \frac { y - 1 } { y + 2 } = \frac { 29 } { 20 }{/tex}

{tex}\frac {( y - 3 ) ( y + 2 ) + y ( y - 1 ) }{y(y+2)}= \frac{29}{20}{/tex}

{tex}\ 20 [ ( y - 3 ) ( y + 2 ) + y ( y - 1 ) ] = 29 \left( y ^ { 2 } + 2 y \right){/tex}

{tex}\ 20 [ ( y^2-3y+2y-6)+(y^2-y)] = 29 \left( y ^ { 2 } + 2 y \right){/tex}

 {tex}20 \left( y ^ { 2 } - y - 6 + y ^ { 2 } - y \right) = 29 y ^ { 2 } + 58 y{/tex}

{tex}20 \left( 2y^2-2y-6 \right) = 29 y ^ { 2 } + 58 y{/tex}

 {tex}11 y ^ { 2 } - 98 y - 120 = 0{/tex}

 {tex}11 y ^ { 2 } - 110 y + 12 y - 120 = 0{/tex}

{tex}( 11 y + 12 ) ( y - 10 ) = 0 {/tex}

{tex} \therefore y = 10{/tex}

{tex}\therefore {/tex} The fraction is {tex}\frac { 7 } { 10 }{/tex}

  • 1 answers

Tanishka Gautam 7 years, 5 months ago

Firstly check the question... Since x-2k-6=0 is not quadratic.. It should be x²-2kx-6=0.... In that case put value of x=3 and find the value of k...
  • 2 answers

Dibyanshu Rawat 7 years, 5 months ago

x2-(3-2)x+6=0 x2-3x+2x+6=0 -x(x+3)2(x+3)=0 (-x+2)(x+3)=0 -x+2=0 -x=-2 x=2 x+3=0 x=-3 Hence the zeroes of polynomial are -3 & 2

Khushi Tekriwal 7 years, 5 months ago

U write wrong question.
  • 4 answers

Ankita ?? Arpita☺️ 7 years, 5 months ago

Thanks bolne ke lia mat bhulna

Ankita ?? Arpita☺️ 7 years, 5 months ago

Sec theta 5/4so ,p=3 by pythagoros theorm By using foormula u find value of l.h.s &RHS LHS=RHS

Ankita ?? Arpita☺️ 7 years, 5 months ago

Sorry you write correct question

Ankita ?? Arpita☺️ 7 years, 5 months ago

Sec theta=5/4 ya 4/5 please bolo
  • 3 answers

Ankita ?? Arpita☺️ 7 years, 5 months ago

I get answer 418 but how.......414

Vaibhav Arora 7 years, 5 months ago

414

Ayodhya Prasad Azad 7 years, 5 months ago

No answer
  • 1 answers

Sia ? 6 years, 6 months ago

Given, 99x + 101y = 499 ....(i)

101x + 99y = 501... (ii)

Adding eqn. (i) and (ii),
( 99x + 101y ) + (101x + 99y ) = 499 + 501
99x + 101y + 101x + 99y = 1000
200x + 200y = 1000
x + y = 5 ...(iii)
Subtracting eqn. (ii) from eqn. (i), we get
( 99x + 101y ) - (101x + 99y ) = 499 - 501
99x + 101y - 101x - 99y = -2
-2x + 2y = - 2
or, x - y= 1 ........ (iv)

Adding equations (iii) and (iv)
x + y + x - y = 5 + 1
2x = 6

{tex}\therefore {/tex} x = 3

Substituting the value of x in eqn. (iii), we get

3 + y = 5

y = 2
Hence the value of x and y of given equation are 3 and 4 respectively.

  • 1 answers

Yogita Ingle 7 years, 5 months ago

a = 3, d = 5
Now, 253 = a + (n + 1) d

⇒ 253 = 3 + (n -1) x 5

⇒ 253 = 3 + 5n – 5 = – 2

⇒ 5n = 253 + 2 = 255

⇒ n = 255/5 = 51

Therefore, 19th term from the last term = 51 – 18 = 33

a33 = a + 32d

= 3 + 32 x 5

= 3 + 160 = 163

Thus, required term is 163

  • 1 answers

Sia ? 6 years, 6 months ago

Let f(x) =  6y5+ 15y4 + 16y3 + 4y+ 10y - 35
and g(x) =3y2+ 5

{tex}\because{/tex} Remainder = 0
Hence, 3y2+ 5 is a factor of 6y5+ 15y4 + 16y3 + 4y+ 10y - 35.

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App