No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 2 answers

Diksha Goyal 7 years, 5 months ago

Minimum 1 hour . You have solve maths

Neha Gurjar 7 years, 5 months ago

It is based on your calculation
  • 1 answers

Ujjwal Yadav 7 years, 5 months ago

Haat or Dimag se.. ???????
  • 2 answers

Diksha Goyal 7 years, 5 months ago

What is the complete question ?

Priyanka Chaurasiya 7 years, 5 months ago

?
  • 1 answers

Rupali Debnath 7 years, 5 months ago

A=bq+r
  • 1 answers

Sia ? 6 years, 6 months ago

Check formulae in revision notes : https://mycbseguide.com/cbse-revision-notes.html

  • 1 answers

Dhanya Monu 7 years, 5 months ago

???? Fast please ....
  • 1 answers

Sia ? 6 years, 6 months ago

Let the man finishes the work in x days and that the boy finishes in y days.

One day's work of a man = {tex}\frac{1}{x}{/tex}

and one day's work of a boy ={tex}\frac{1}{y}{/tex}

Since, 4 men and 6 boys finish a piece of work in 5 days.

{tex}\therefore{/tex} One day's work of 4 men and 6 boys = {tex}\frac{1}{5}{/tex} of the work

{tex} \Rightarrow \frac{4}{x} + \frac{6}{y} = \frac{1}{5}{/tex}  

Similarly, in second case, 

One day's work of 3 men and 4 boys = {tex}\frac{1}{7}{/tex} part of the work

{tex}\therefore \frac{3}{x} + \frac{4}{y} = \frac{1}{7}{/tex}

Thus, we have the following equations

{tex}\frac{4}{x} + \frac{6}{y} = \frac{1}{5}{/tex} ......(i)

and

{tex}\frac{3}{x} + \frac{4}{y} = \frac{1}{7}{/tex} .....(ii)

Here , Eqs. (i) and (ii) are not in linear form , so we reduce them in linear form by putting {tex}\begin{array}{l}\frac1x\;=\;u\;and\;\frac1y\;=\;v\\\end{array}{/tex}

Now, Eq. (i) becomes {tex}4u + 6v = \frac{1}{5}{/tex}  .....(iii)

and Eq(ii) becomes {tex}3u + 4v = \frac{1}{7}{/tex} .....(iv)

On multiplying Eq(iii) by 3 and Eq(iv) by 4 and then subtract  Eq , we get

{tex}18v - 16v = \frac{3}{5} - \frac{4}{7}{/tex}

{tex}\Rightarrow 2v = \frac{{21 - 20}}{{35}} \Rightarrow 2v = \frac{1}{{35}} \Rightarrow v = \frac{1}{{70}}{/tex}

Put {tex}v=\frac{1}{70}{/tex} in Eq(iv), we get {tex}3u + \frac{4}{{70}} = \frac{1}{7}{/tex}

{tex} \Rightarrow 3u = \frac{1}{7} - \frac{4}{{70}}{/tex}

{tex} \Rightarrow 3u = \frac{6}{{70}}{/tex}

{tex} \Rightarrow u = \frac{1}{{35}}{/tex}

Thus {tex}u=\frac{1}{35}{/tex} and {tex}v=\frac{1}{70}{/tex}

{tex} \Rightarrow \frac{1}{x} = \frac{1}{{35}}{/tex}and {tex}\frac{1}{y} = \frac{1}{{70}}{/tex}

{tex} \Rightarrow x = 35{/tex} and {tex}y=70{/tex}

Hence, 1 man alone and 1 boy alone finishes the work in 35 and 70 days, respectively.

  • 1 answers

Shalu Gupta 7 years, 5 months ago

Mean - Mode — 3(Mean - Meadian)
  • 1 answers

Md Asad 7 years, 5 months ago

Hfh
  • 0 answers
  • 3 answers

Anmol Gupta 7 years, 5 months ago

47.5

Alpna Suthar 7 years, 5 months ago

47.5

Divyansh Yadav 7 years, 5 months ago

47.5
  • 2 answers

Alpna Suthar 7 years, 5 months ago

Step 1: Multiply eq. 1 by 2 and eq. 2 by 3 {to equalise coefficient of x} 6x+8y=20 (eq. 3) 6x-6y= 6. ( eq.4) Step 2: Subtract eq.4 from eq. 3 6x+8y=20 6x-6y=6 -. +. - -------------------- 14y = 14 y=1 Step 3:Find x by substitution method x= 6+6y/6. =. 1 + y. =. 1+1 x =2

Shrishti Arora 7 years, 5 months ago

3x+4y=10 (i)

2x-2y=2 (ii)

Multiply eqn (i) by 2 and eqn (ii) by 3 

We get,

6x+8y=20 - (iii)

6x-6y=6 - (iv)

Now solving eqn(iii) and (iv) we get 14y = 14 i.e y=1

Substituting y=1 in eqn  (i) we get 3x=6 i. e. x=2 

  • 1 answers

Shrishti Arora 7 years, 5 months ago

Cosec  (theta)=1/sin (theta)

Sec (theta)=1/cos (theta)

  • 0 answers
  • 1 answers

Divye Prakash 7 years, 5 months ago

Please give me the answer
  • 2 answers

Paul Varghese 7 years, 5 months ago

Therefore HCF=10

Paul Varghese 7 years, 5 months ago

420=130×3+30 130=30×4+10 30=10×3+0
  • 2 answers

Mumaiz Peer 7 years, 5 months ago

32/1,24/1 L C M is 1

Yash Chauhan 7 years, 5 months ago

3
  • 1 answers

Sia ? 6 years, 6 months ago

Given polynomial is  f(x) = x- 3x+ x + 1
Let {tex} \alpha{/tex} = (a - b), {tex} \beta{/tex} = a and {tex} \gamma{/tex} = (a + b)
Now, {tex} \alpha + \beta + \gamma{/tex} = {tex} - \frac { ( - 3 ) } { 1 }{/tex}
⇒ (a - b) + a + ( a + b ) = 3
⇒ a - b + a + a+ b = 3
⇒ a + a + a = 3
⇒ 3a = 3
⇒ a = 3/3
⇒ a = 1
Also, {tex} \alpha \beta + \beta y + \gamma \alpha = \frac { 1 } { 1 }{/tex}
⇒ (a - b)a + a (a + b) + (a + b)(a - b) = 1 
⇒ a2 - ab + a2 +ab + a2 - b2 = 1
⇒ 3a2 - b2 = 1 ( ∵ a = 1)
⇒ 3(1)2 - b2 = 1( ∵ a = 1)
⇒ 3 - b2 = 1
⇒ b2 = 2
⇒ b = {tex} \pm \sqrt{2}{/tex}
Hence, a = 1 and b = {tex} \pm \sqrt{2}{/tex}

  • 4 answers

Anurag Sinha 7 years, 5 months ago

+14

Christiano Ronaldo 7 years, 5 months ago

14

Mumaiz Peer 7 years, 5 months ago

14

Rahul Meena 7 years, 5 months ago

14
  • 5 answers

Shivangi Agrawal 7 years, 5 months ago

1 is answer

Anurag Sinha 7 years, 5 months ago

3

Christiano Ronaldo 7 years, 5 months ago

1

Mumaiz Peer 7 years, 5 months ago

1

Rahul Meena 7 years, 5 months ago

1 is answer Are you really a student of class 10
  • 3 answers

Akash Tripathi 7 years, 5 months ago

Thanks coprime and composit is confusing

Rohit Kumar 7 years, 5 months ago

The number having more than two factor is called composite number. Eg 4,8,9,25,12

Vaibhavi Prajapati 7 years, 5 months ago

Which has more tha 2 factors i.e., one and the number itself 4 is the smallest composite number.
  • 1 answers

Sanjana Singh 7 years, 5 months ago

x2 -4x-8 x2-4x+2x-8 x(x-4)+2(x-4) (x-4)(x+2) x=4,-2
  • 1 answers

Hussain Golden 7 years, 5 months ago

Simple, b1/b2, c1/c2, a1/a2, b1/b2. Now put the value
  • 1 answers

Diksha Goyal 7 years, 5 months ago

Pls write your complete qus...
  • 1 answers

Sia ? 6 years, 6 months ago

we have, Dividend = divisor × quotient + remainder
{tex}\Rightarrow{/tex}{tex}{/tex}{tex}f(x)\;=\;g(x).\;q(x)\;+\;r(x){/tex}
{tex}\Rightarrow\ x^3\;–\;3x^2\;+\;x\;+\;2\;=\;\;g(x)\;\times\;(x\;–\;2)\;–\;2x\;+\;4{/tex}
{tex}\Rightarrow\ x^{3\;}–\;3x^2\;+\;x\;+\;2\;+\;2x\;–\;4\;=\;g(x)\;\times\;(x\;–\;2){/tex}
{tex}\Rightarrow{/tex} {tex}x^3\;–\;3x^2\;+3\;x\;\;\;–\;2\;=\;g(x)\;\times\;(x\;–\;2){/tex}
{tex} \Rightarrow\ g ( x ) = \frac { x ^ { 3 } - 3 x ^ { 2 } + 3 x - 2 } { ( x - 2 ) }{/tex}
{tex}\Rightarrow\ g ( x ) = \left( x ^ { 3 } - 3 x ^ { 2 } + 3 x - 2 \right) \div ( x - 2 ){/tex}

g(x) = x2 – x + 1

  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App