No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Sia ? 6 years, 6 months ago

We have,

DE || BC
Now, In {tex}\triangle{/tex}ADE and {tex}\triangle {/tex}ABC
{tex}\angle A = \angle A{/tex} [common]
{tex}\angle A D E = \angle A B C{/tex} [{tex}\because{/tex} DE || BC {tex}\Rightarrow{/tex} Corresponding angles are equal]
{tex}\Rightarrow \triangle A D E= \triangle A B C{/tex} [By AA criteria]
{tex}\Rightarrow \frac { A B } { B C } = \frac { A D } { D E }{/tex} [{tex}\because{/tex} Corresponding sides of similar triangles are proportional]
{tex}\Rightarrow \frac { A B } { 5 } = \frac { 2.4 } { 2 }{/tex}
{tex}\Rightarrow A B = \frac { 2.4 \times 5 } { 2 }{/tex}
{tex}\Rightarrow{/tex} AB = 1.2 {tex}\times{/tex} 5
= 6.0 cm
{tex}\Rightarrow{/tex} AB = 6 cm
{tex}\therefore{/tex} BD = AB - AD
= 6 - 2.4
= 3.6 cm
{tex}\Rightarrow{/tex} DB = 3.6 cm
Now,
{tex}\frac { A C } { B C } = \frac { A E } { D E }{/tex} [{tex}\because{/tex} Corresponding sides of similar triangles are equal]
{tex}\Rightarrow \frac { A C } { 5 } = \frac { 3.2 } { 2 }{/tex}
{tex}\Rightarrow A C = \frac { 3.2 \times 5 } { 2 }{/tex}
= 1.6 {tex}\times{/tex} 5
= 8.0 cm
{tex}\Rightarrow{/tex} AC = 8 cm
{tex}\therefore{/tex} CE = AC - AE
= 8 - 3.2
= 4.8 cm
Hence, BD = 3.6 cm and CE = 4.8 cm

  • 1 answers

Sia ? 6 years, 6 months ago

Assume digit at ten’s place = x and digit at unit’s place =  y
​​Therefore number = 10x + y
Also xy = 15 {tex}\Rightarrow{/tex} x = {tex}\frac{15}{y}{/tex} ...(i)
According to given situation we have, 
    10x + y + 18 = 10y + x
{tex}\Rightarrow{/tex}9x - 9y + 18 = 0
{tex}\Rightarrow{/tex}x - y + 2 = 0
{tex}\Rightarrow{/tex}{tex}\frac{15}{y}{/tex} - y + 2 = 0 (From (i))
{tex}\Rightarrow{/tex}15 - y2 + 2y = 0
{tex}\Rightarrow{/tex}y2 - 2y - 15 = 0

On factorizing the above quadratic equation we get
       (y - 5) (y + 3) = 0
{tex}\Rightarrow{/tex}y = 5, y = -3 [ y = -3 is  rejected]
Put the value of y = 5 in equation (i), we obtain
     x = {tex}\frac{15}{5}{/tex} = 3
{tex}\therefore{/tex} Number = 3 {tex}\times{/tex} 10 + 5 = 35.

  • 1 answers

Niyati Gupta 7 years, 4 months ago

X: 3, -1/2
  • 1 answers

Jiya Kardam 7 years, 4 months ago

X2 + 250x - 37500 X2 + 750x -500x - 37500 X(X + 750) - 500(X + 750) (X +750)(X-500)
  • 1 answers

Sia ? 6 years, 6 months ago

Let the number of sides of polygon be The interior angles of the polygon form an A.P.

Here, a = 120o and d = 5o

Since Sum of interior angles of a polygon with n sides is {tex}( n - 2 ) \times 180 ^ { \circ }{/tex}

{tex}\therefore \mathrm { S } _ { n } = ( n - 2 ) \times 180 ^ { \circ }{/tex}

{tex}\Rightarrow \frac { n } { 2 } [ 2 \times 120 + ( n - 1 ) \times 5 ] = 180 n - 360{/tex}

{tex}\Rightarrow 120 n + \frac { 5 n ^ { 2 } - 5 n } { 2 } = 180 n - 360{/tex}

{tex}\Rightarrow{/tex} 240n + 5n2 - 5n = 360n - 720

{tex}\Rightarrow{/tex} 5n2 - 125n + 720 = 0

divide by 5, we get 

{tex}\Rightarrow{/tex} n2 - 25n + 144 = 0

{tex}\Rightarrow{/tex} (n - 16) (n - 9) = 0 

{tex}\Rightarrow{/tex} n = 16 or n = 9 

But n = 16 not possible because a16 = a + 15d = 120 + 15 {tex}\times{/tex} 5 = 195o > 180o

Therefore, number of sides of the polygon are 9.

  • 1 answers

Sia ? 6 years, 6 months ago

On dividing x4 - 6x3 - 16x2 - 25x + 10 by x2 - 2x + k

{tex}\therefore{/tex} Remainder = (2k - 9)x - (8 - k)k + 10
But the remainder is given as x+a.
On comparing their coefficients,
2k - 9 = 1
{tex}\Rightarrow{/tex} k = 10
{tex}\Rightarrow{/tex} k = 5 and,
-(8 - k)k + 10 = a
{tex}\Rightarrow{/tex} a = -(8 - 5)5 + 10 = -15 + 10 = -5
Hence, k = 5 and a = -5

  • 1 answers

Shiva Yadav Shiva Yadav 7 years, 4 months ago

X=52/10+Y
  • 3 answers

The Devil Prince 7 years, 4 months ago

It is none of them because only whole numbers can be classified as even or odd. ?????

Kaushiki Singh 7 years, 4 months ago

Odd no.??

Alpna Suthar 7 years, 4 months ago

Odd
  • 2 answers

Elsa B 7 years, 4 months ago

Wow what a answer!!!

Rajat Ranjan 7 years, 4 months ago

The Degree (for a polynomial with one variable, like <i>x</i>) is:

the <a href="https://www.mathsisfun.com/exponent.html">largest exponent</a> of that variable.

  • 1 answers

Nisha Sangwan 7 years, 4 months ago

Write full questions whether we prove it or find value of anyone in this
  • 1 answers

Shiva Yadav Shiva Yadav 7 years, 4 months ago

But how on here?
  • 1 answers

Govind Agrawal ??? 7 years, 4 months ago

17×19×23 are the prime factors of 7429
  • 1 answers

Rahul Kumar 7 years, 4 months ago

Let the first zero is x And.other is 8-x (x)(8-x)=12
  • 1 answers

Shiva Yadav Shiva Yadav 7 years, 4 months ago

X=1/4,1/4
  • 1 answers

Sia ? 6 years, 4 months ago

{tex}\frac { 1 } { x + 4 } - \frac { 1 } { x - 7 } = \frac { 11 } { 30 }{/tex} where {tex}x \neq - 4,7{/tex}
{tex}\Rightarrow \frac { ( x - 7 ) - ( x + 4 ) } { ( x + 4 ) ( x - 7 ) } = \frac { 11 } { 30 }{/tex}
{tex}\Rightarrow \frac { - 11 } { ( x + 4 ) ( x - 7 ) } = \frac { 11 } { 30 }{/tex}
{tex}\Rightarrow{/tex} x2 - 7x + 4x - 28 = -30
{tex}\Rightarrow{/tex} x2 - 3x + 2= 0
Comparing equation x2 - 3x + 2 = 0 with general form ax2 + bx + c = 0,
We get a = 1, b = -3 and c = 2
Using quadratic formula {tex}x = {-b \pm \sqrt{b^2-4ac} \over 2a}{/tex}to solve equation,
{tex}x = \frac { 3 \pm \sqrt { ( - 3 ) ^ { 2 } - 4 ( 1 ) ( 2 ) } } { 2 \times 1 }{/tex}
{tex}\Rightarrow x = \frac { 3 \pm \sqrt { 1 } } { 2 }{/tex} 
{tex}\Rightarrow x = \frac { 3 + \sqrt { 1 } } { 2 } , \frac { 3 - \sqrt { 1 } } { 2 }{/tex}  {tex}\Rightarrow{/tex} x = 2, 1

  • 1 answers

Varun Biban 7 years, 4 months ago

varun
  • 3 answers

Shikayna Panday 7 years, 4 months ago

Ok fine

Elsa B 7 years, 4 months ago

Hi I am from KV but not korba.??

Shikayna Panday 7 years, 4 months ago

Hiii to all
  • 1 answers

Kaushiki Singh 7 years, 4 months ago

What u mean?
  • 1 answers

Ramireddy Vyshanvi 7 years, 4 months ago

2(4999)0+99988
  • 1 answers

Shikhar Maheshwari 7 years, 4 months ago

First area of cube=64cm^3. a^3=64 a=8 As two cubes are joined so length will be 2*8. Breadth will be 8 and height will be 8. Now apply TSA=2(lb+bh+hl) Surface area = 640cm cubic
  • 1 answers

Maitreyee Dave 7 years, 4 months ago

b/4 √4a²-b²
  • 1 answers

Maitreyee Dave 7 years, 4 months ago

Let √3 be rational no. Then it exist in the form p/q where q≠0 √3=p/q. (here slash means upon) (on squaring both side) (√3)²= (p/q)² 3=p²/q² q²=p²/3. -------(1) From (1) we noticed that p² is divisible by 3 therefore p is also divisible by 3 -----(2) Now put p=3r in (1) Therefore q²= (3r)²/3 So, q²= 9r²/3 q²= 3r² (÷3) q²/3= r² OR r²= q²/3-----(3) From (3) we noticed that q² is divisible by 3 therefore q is also divisible by 3 ------(4) So by (2) & (4) it contradicts our suppose that √3 is rational but it is irrational because both p and q are divisible by 3 Hence proved
  • 1 answers

Shikhar Maheshwari 7 years, 4 months ago

Sun's elevation is 60° i.e base angle =60° Height 9√3 m Tan60=p/b √3=9√3/b b=9 m( length of shadow)
  • 1 answers

Anirudh Dabas 7 years, 4 months ago

A hypertext document connected to world wide web
  • 6 answers

Janani Srinivasan 7 years, 4 months ago

6

Kaushiki Singh 7 years, 4 months ago

6????

Anwaya Kumar Nayak 7 years, 4 months ago

6

Vaishnavi K R 7 years, 4 months ago

6

Elsa B 7 years, 4 months ago

6

Abhishek Deswal 7 years, 4 months ago

6

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App