No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Dheeraj Verma 7 years, 4 months ago

Let the cost of a bat = X and the cost of a ball = Y , then According to question 3X + 6Y =3900 . Then take 3 as common in L.H.S. and divide 3900 by 3, such as 3900/3 = 1300 from here we get the first equation X + 2Y =1300 Now , we find second equation from question X + 3Y = 1300 and from here we put the value of X or Y then make the graph.
  • 4 answers

Kaushiki Singh 7 years, 4 months ago

So plzz use that method.

Kaushiki Singh 7 years, 4 months ago

In linear eqn the simple method is elimination...

Vikram Rana 7 years, 4 months ago

U can solve this rapidly by using elimination method

Tarun Antil 7 years, 4 months ago

You may use elimination method
  • 2 answers

Sweety Bharti 7 years, 4 months ago

Value of X is 10 and Y is 4

Aniket Rajput 7 years, 4 months ago

×+y=14×-y=4 ×-14×+y+y=4 13×+2y=4 13×+2y-4=0
  • 1 answers

Sia ? 6 years, 5 months ago

The given points are A(x, -1) and B(5, 3)
Also given, AB = 5

 {tex}\Rightarrow{/tex}AB2=25 
{tex}\Rightarrow{/tex} (5 - x)2 + (3 + 1)2 =25 [ using distance formula]
{tex}\Rightarrow{/tex} 25 + x2 - 10x + 16 =25
{tex}\Rightarrow{/tex} x2 - 10x + 16 =0
{tex}\Rightarrow{/tex} x2 - 8x - 2x + 16 = 0
{tex}\Rightarrow{/tex} x (x - 8) -2(x - 8) =0
{tex}\Rightarrow{/tex} (x - 8) (x - 2) = 0
{tex}\Rightarrow{/tex} x - 8 = 0 or x - 2 =0
{tex}\Rightarrow{/tex} x = 8 or x = 2
Hence, possible values of x are 8 & 2.

  • 6 answers

Aditya Chauhan 7 years, 4 months ago

3

Munish Malhotra 7 years, 4 months ago

3zero i.e alpha betea gama

Elsa B 7 years, 4 months ago

3

Yashomani Maurya 7 years, 4 months ago

3

Nikita Jangid 7 years, 4 months ago

Three zeros

Abhishek Kushwaha 7 years, 4 months ago

3
  • 1 answers

Tanu Choudhary 7 years, 4 months ago

We have to see which number greater so, 7052>420 Applying division lemma a=bq+r 7052=420*16+332 Here remainder is not zero so, 332=16×2+12 Again remainder is not zero so, 12=2×6+0 Here the remainder is zero The divisor on this stage is 6.So the HCF is 6
  • 1 answers

Sia ? 6 years, 5 months ago

Common difference,
{tex}d_1 = \sqrt { 6 } - \sqrt { 3 }{/tex}
{tex}= \sqrt { 3 } ( \sqrt { 2 } - 1 ){/tex}
{tex}d_2= \sqrt { 9 } - \sqrt { 6 }{/tex}
{tex}= \sqrt { 3\times3 } - \sqrt{2\times 3}{/tex}
{tex}= 3 - \sqrt { 6 }{/tex}
{tex}d_3 = \sqrt { 12 } - \sqrt { 9 } {/tex}
{tex}= \sqrt { 4\times3 } - \sqrt { 9 } {/tex}
{tex}= 2 \sqrt { 3 } - 3{/tex}
As common difference does not equal.
Hence, The given series is not in A.P.

  • 1 answers

Shivam Namdev 7 years, 4 months ago

Polynomial which is in one variable means that, it has only one variable. For ex. 7x – 9 = 16
  • 0 answers
  • 1 answers

Elsa B 7 years, 4 months ago

Angle smaller than 90 degree.
  • 2 answers

Elsa B 7 years, 4 months ago

Thanks.

Bethini S. 7 years, 4 months ago

Yes , your all questions will be answered here . This guide is really helpful Alia . All doubt of yours will get cleared.
  • 7 answers

Pratik Kejriwal 7 years, 4 months ago

Maths is interesting but sometimes boring

Bharti Bharti 7 years, 4 months ago

No this is hard but interesting

Bethini S. 7 years, 4 months ago

How can it be a piece of cake Alia. Maths is very interesting , it dont let us free to be bored. Yoú will alwaya enjoy with maths instead of gêtting bored. Its my opinion☝.

Rajput S 7 years, 4 months ago

Sometimes maths becomes interesting And sometimes it becomes boaring

Smarty Arya 7 years, 4 months ago

Maths is very interesting

Surendrapal Singh Singh Gaur 7 years, 4 months ago

It's just ur own opinion.!!!!

Elsa B 7 years, 4 months ago

Its a piece of cake.
  • 1 answers

Sia ? 6 years, 4 months ago

Given : In {tex}\triangle A B C{/tex}, DE || BC and intersects AB in D and AC in E. 
Prove that : {tex}\frac{AD}{DB} = \frac{AE}{EC}{/tex}

Construction: Join BE, CD and draw EF {tex}\perp{/tex} BA and DG {tex}\perp{/tex} CA.  
Now from the given figure we have,
EF is the height of ∆ADE and ∆DBE (Definition of perpendicular)
Area({tex}\triangle{/tex}ADE) ={tex}\frac{AD.EF}{2}{/tex}  .....(1)
Area({tex}\triangle{/tex}DBE) = {tex}\frac{DB.EF}{2}{/tex}   ....(2)
Divide the two equations we have
{tex}\frac{Area \triangle ADE}{Area \triangle DBE} = \frac{AD}{DB}{/tex}   .....(3)
{tex}\frac{Area \triangle ADE}{Area \triangle DEC} = \frac{AE}{EC}{/tex}   .....(4)
Therefore, {tex}\triangle \mathrm{DBE} \sim \triangle \mathrm{DEC}{/tex} (Both the ∆s are on the same base and between the same || lines)
Area({tex}\triangle{/tex}DBE) = Area({tex}\triangle{/tex}DEC) (If the two triangles are similar their areas are equal) ....(5)
{tex}\frac{AD}{DB} = \frac{AE}{EC}{/tex} [from equation 3,4 and 5]
Hence proved.

  • 1 answers

Priyam Chakraborty 7 years, 4 months ago

Sin 18
  • 2 answers

Aditya Chauhan 7 years, 4 months ago

222

Smriti Yadav 7 years, 4 months ago

222
  • 2 answers

Smriti Yadav 7 years, 4 months ago

Or if u have any problem then use shri dharacharya method

Smriti Yadav 7 years, 4 months ago

Ya , firstly multiply the coefficient of first and third term and split the middle term as the factors of it ( if you add or subtract then it will be the middle term )
  • 4 answers

Adarsh Patil 7 years, 4 months ago

x+y=14......... (1) x-y=4..........(2) x=4+y x+y=14 4+y+y=14 4+2y=14 2y=14-4 2y=10 y=10÷2 y=5 x=4+y x=4+5 x=9

Yash Rajput 7 years, 4 months ago

x+y=14........(i) x=14-y......(a) x-y=4........(ii) Substitute in (a) in (ii) 14-y-y=4 14-2y=4 -2y=4-14 y=-10/-2 y=5 Substitute in(i) x+y=4 x+5=4 x=4-5 x=-1

Yogita Ingle 7 years, 4 months ago

This for solving method not for graphical method

Yogita Ingle 7 years, 4 months ago

x + y = 14 ........(i)
x - y = 4 .........(ii)
(i) + (ii)
2x = 18
x = 18/2 = 9
Put x = 9 in (i)
9 + y =1 4
y = 14 - 9
y = 5
So, x = 9 and y = 5

  • 1 answers

Himanshu Yadav 7 years, 3 months ago

,5/10=2
  • 0 answers
  • 1 answers

Sia ? 6 years, 5 months ago

Let p be any positive integer and b = 3. Applying division Lemma with p and b =3 ,
we have
p = 3q + r, where 0 {tex}\leq{/tex} r < 3 and q is some integer
So r=0,1,2
If r=0 , p=3q
If r=1, p=3q+1
If r=2, p=3q+2
Therefore any positive integer  is of form 3q,3q+1,3q+2 for some integer q.

?
  • 0 answers
  • 1 answers

Sia ? 6 years, 6 months ago

q = a + (p - 1)d ..... (i)
p = a + (q - 1)d ...... (ii)
q - p = (p - 1 - q + 1)d
{tex}\frac{{q - p}}{{p - q}} = d{/tex}
{tex} \Rightarrow d = - 1{/tex}
Put the value of d in eq (i)
q = a + (p - 1) (-1)
{tex} \Rightarrow {/tex} q = a - p + 1
{tex} \Rightarrow {/tex} a = q + p - 1
ap+q = a +(p + q - 1)d
= (q + p - 1) + (p + q - 1) (-1)
= q + p - 1 - p - q + 1
= 0

  • 1 answers

Akahay Kondru 7 years, 5 months ago

1/secA-tanA
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App