No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Sia ? 6 years, 6 months ago

The given pair of equation is
6x + 3y = 6xy
{tex}\Rightarrow \quad \frac { 6 x } { x y } + \frac { 3 y } { x y } = \frac { 6 x y } { x y }{/tex}..............Dividing throughout by xy
{tex}\Rightarrow \quad \frac { 6 } { y } + \frac { 3 } { x } = 6{/tex}.........................(1)
2x + 4y = 5xy
{tex}\Rightarrow \quad \frac { 2 x } { x y } + \frac { 4 y } { x y } = \frac { 5 x y } { x y }{/tex} ..................Dividing throughout by xy
{tex}\Rightarrow \quad \frac { 2 } { y } + \frac { 4 } { x } = 5{/tex}..........................(2)
Put {tex}\frac { 1 } { x } = u{/tex} .....................(3)
And {tex}\frac { 1 } { y } = v{/tex}..........................(4)
Then, the equation (1) and (2) can be written as:
{tex}6 v + 3 u = 6{/tex}..................(5)
2 v + 4 u = 5 ..................(6)
Multiplying equation (6) by 3, we get
6 v + 12 u = 15 ..........................(7)
Subtracting equation (5) from equation(7), we get 9u = 9
 {tex}\Rightarrow \quad u = \frac { 9 } { 9 } = 1{/tex}
{tex}\Rightarrow \quad \frac { 1 } { x } = 1{/tex}.......................using (3)
{tex}\Rightarrow \quad x = 1{/tex}
Substituting this value of u in equation (5), we get 6v + 3 X 1 = 6
{tex}\Rightarrow \quad 6 v + 3 = 6{/tex}
{tex}\Rightarrow 6 v = 6 - 3 = 3{/tex}
{tex}\Rightarrow \quad v = \frac { 3 } { 6 } = \frac { 1 } { 2 }{/tex}
{tex}\Rightarrow \quad \frac { 1 } { y } = \frac { 1 } { 2 }{/tex}......................using (4)
{tex}\Rightarrow y =2{/tex}
Hence, the solution of the given pair of the equation is x =1, y =2
Verification: Substituting x =1, y =2
We find that both the equation (1) and (2) are satisfied as shown below:
{tex}\frac { 6 } { y } + \frac { 3 } { x } - \frac { 6 } { 2 } + \frac { 3 } { 1 } - 3 + 3 - 6{/tex}
{tex}\frac { 2 } { y } + \frac { 4 } { x } - \frac { 2 } { 2 } + \frac { 4 } { 1 } = 1 + 4 = 5{/tex}
Hence, the solution is correct.

  • 1 answers

Janani Srinivasan 7 years, 4 months ago

area of sphere=4 pi r3 so ,154=4×22/7×r2 154=88/7×r2 154/88/7=r2 154/88/7=r2 so r=root of 49/4so aftr removing root we get =7/2
  • 0 answers
  • 1 answers

Riddhi Agarwal 7 years, 4 months ago

No it is a rational no.
  • 1 answers

Shubham Achary 7 years, 4 months ago

The marks best out of all 3 terms that is (pre mid term, mid term and post mid term) will be given to your school to your board exams
  • 1 answers

Japsimar Bedi 7 years, 4 months ago

4u^2 +8u =0 4u [u+2]=0 Now 4u =0 and u+2=0 u =0/4. u=-2 u=0 Sum of zeros =0+(-2)=0-2 -8/4 Product of zer8=0*-2=0=0/4...
  • 2 answers

Sanjivani Gawade 7 years, 4 months ago

3 to 4

Apurvi Jain 7 years, 4 months ago

3 or 4
  • 0 answers
  • 1 answers

Angel ☺☺☺ Manu 7 years, 4 months ago

The common solution of linear equation is called pair of linear equation
  • 1 answers

Shiva Yadav Shiva Yadav 7 years, 4 months ago

I think some part of que is miss
  • 3 answers

Aniket Mittal 7 years, 4 months ago

Let 50 paise coin be X and 20 paise Be y X+Y =50. eq. 1 50X +20Y=11.25. eq.2 multiply first equation by 20 20 X + 20Y = 100. Eq 3 Subtract third equation and second equation 20 X + 20 Y = 100 -50X -20y = -11.25 Solve the equation 3rd and 2nd Then we have the value of x and y

Usha Yadav 7 years, 4 months ago

Your question is wrong

Shivam Patel 7 years, 4 months ago

Let 50 paise coin be x and 20 paise coin be y X+y=50 50x +20y =11.25 Solve this equation
  • 0 answers
  • 1 answers

Anshul Maurya 7 years, 4 months ago

=(100-100)÷(10-10)=20 L.H.S = { (10)²-(10)²}÷(10-10) = (10+10) (10-10)÷(10-10) = 10+10 =20. Proved
  • 3 answers

Abhijeet Maurya 7 years, 4 months ago

10/10 + 10/10 =2 1+1=2 2=2

Ashee Tomar 7 years, 4 months ago

10/10 + 10/10 ON CANCELLING 1+1=2

Anshul Maurya 7 years, 4 months ago

Wrong question.
  • 1 answers

Sia ? 6 years, 5 months ago

Mark the distance 9.3 units from a fixed point A on a given line to obtain a point B such that AB = 9.3 units. From B mark a distance of 1 unit and call the new point as C. Find the mid-point of AC and call that point as O. Draw a semi-circle with centre O and radius OC = 5.15 units. Draw a line perpendicular to AC passing through B cutting the semi-circle at D. Then BD = {tex}\sqrt {9.3} .{/tex}

  • 0 answers
  • 1 answers

Sanjivani Gawade 7 years, 4 months ago

1st is a Square 2nd is not a Quadrilateral 3rd is a Parallelogram !!!@ Hope it helps you!!!???
  • 1 answers

Ezhil Mathy 7 years, 4 months ago

-1is the answer 1+cot90-1/sin30 1+0-2=-1
  • 1 answers

Japsimar Bedi 7 years, 4 months ago

x^2=0 x^-[√15]=0 [t-15][t+15]=0 :t=√15 and -√15 Sum of zeros =√15 +[-√15]=√15-√15 =0=-0/1 Product of zeros =√15*(-√15) =-√15 =-√15 /1....??
  • 1 answers

Elsa B 7 years, 4 months ago

Hello you just have learn the basics and some formulas?
  • 1 answers

Prabhu Gehlot 7 years, 4 months ago

10
  • 0 answers
  • 1 answers

Sia ? 6 years, 6 months ago

{tex}D = [2(k -12)]^2 - 4(k - 12)\times  2{/tex}
= 4(k -12)2 - 8(k - 12)
For equal and real roots, D = 0
{tex}\Rightarrow{/tex}{tex}4(k - 12)^2 - 8(k - 12) = 0{/tex}
{tex}\Rightarrow{/tex}{tex}4(k - 12) (k - 12 - 2) = 0{/tex}
{tex}\Rightarrow{/tex}{tex}4(k - 12) (k - 14) = 0{/tex}
{tex}\Rightarrow{/tex}k =12 or k = 14
{tex}\because{/tex}{tex}\ne{/tex} 0 {tex}\Rightarrow{/tex} k {tex}\ne{/tex}12; {tex}\therefore{/tex} k = 14.

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App