No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Kannu Kranti Yadav 7 years, 4 months ago

C.S.A of cone is πrl, here π is 22/7 or 3.142 and r is radius of cone and l is slant height of cone.
  • 2 answers

Dheeraj Verma 7 years, 4 months ago

Sin is equal to ^1- cos2 and cos is equal to ^1- sin2

Savrit Mor 7 years, 4 months ago

Sin equal to 1/cosec Cos equal to 1/sec
  • 1 answers

Sia ? 6 years, 6 months ago

Let AD = 5x cm and DB = 4x cm. Then AB = AD + DB = (5x + 4x) cm = 9x cm.
In {tex}\triangle ADE{/tex} and {tex}\triangle ABC{/tex}, we have
{tex}\angle A D E = \angle A B C{/tex} [corresponding angles]
{tex}\angle A E D = \angle A C B{/tex} [corresponding angles]

{tex}\angle A = \angle A {/tex} [common in both triangles] 
{tex}\therefore \quad \triangle A D E \sim \triangle A B C{/tex} [By AAA - Similarity Criteria ]
{tex}\Rightarrow \frac { D E } { B C } = \frac { A D } { A B }{/tex}[ As corresponding sides of similar triangles are proportionate to each other] 
{tex}= \frac { 5 x } { 9 x } = \frac { 5 } { 9 }{/tex}
In {tex}\triangle DFE{/tex} and {tex}\triangle CFB{/tex} , we have
{tex}\angle E D F = \angle B C F{/tex} [alternate interior angles as DE|| BC ]
and {tex}\angle D E F = \angle C B F{/tex} [alternate interior angles as DE || BC].
 {tex}\therefore \quad \triangle D F E \sim \triangle C F B{/tex} ( By AA similarity Criteria) 
{tex}\Rightarrow \quad \frac { \operatorname { ar } ( \Delta D F E ) } { \operatorname { ar } ( \Delta C F B ) } = \frac { D E ^ { 2 } } { C B ^ { 2 } } = \frac { D E ^ { 2 } } { B C ^ { 2 } }{/tex}{tex}= \left( \frac { D E } { B C } \right) ^ { 2 }{/tex}
{tex}= \left( \frac { 5 } { 9 } \right) ^ { 2 } = \frac { 25 } { 81 }{/tex}
{tex}\Rightarrow \quad \operatorname { ar } ( \triangle D F E ) : \operatorname { ar } ( \triangle C F B ){/tex}
= 25 : 81.
   

  • 1 answers

Tanzeela Raaz 7 years, 4 months ago

2x+3y=90. (Sin 90°=1). (1) 2x-3y=√3/2 (cos 30°=√3/2). (2) Solving both the equation, we get 2x+3y=90 2x-3y=30 = 4x=120 = x=120/4 = x= 30 Now, Putting the value of x=30 in (1) 2×30+3y=90 60+3y=90 3y=30 Y=10 Therefore, the value of x=30 and y=10.
  • 1 answers

Sia ? 6 years, 4 months ago

Given polynomial is f(x) = ax3 + 3bx2 + 3cx + d.
Let p-q, p, and p+q be the zeros of the polynomial f(x). Then,
Sum of the zeros = {tex}-\frac{\text { coefficient of } x^{2}}{\text { coefficient of } x^{3}}{/tex}
p - q + p + p + q = {tex}\frac{-3 b}{a}{/tex}
{tex}3 p=\frac{-3 b}{a}{/tex}
p = {tex}\frac{-b}{a}{/tex}
Since p is a zero of the polynomial f(x).
Therefore, f(p) = 0
f(p)=ap3 + 3bp2 + 3cp + d = 0
{tex}\Rightarrow{/tex}{tex}a\left(\frac{-b}{a}\right)^{3}+3 b \times\left(\frac{-b}{a}\right)^{2}+3 c \times\left(\frac{-b}{a}\right)+d=0{/tex}
{tex}\Rightarrow{/tex}{tex}\frac{-b^{3}}{a^{2}}+\frac{3 b^{3}}{a^{2}}-\frac{3 c b}{a}+d=0{/tex}
{tex}\Rightarrow{/tex}{tex}\frac{-b^{3}+3 b^{3}-3 a b c+a^{2} d}{a^{2}}=0{/tex}
{tex}\Rightarrow{/tex}2b3 - 3abc +a2d = 0
Therefore, 2b3 - 3abc + a2d = 0
Hence proved.

  • 1 answers

Tanzeela Raaz 7 years, 4 months ago

X+y=5. (1) 2x-3y=4. (2) Multiplying (1) by (2) 2(x+y)=2×5 2x+2y=10. (3) Subtracting (3) from (2) 2x+2y=10 2x-3y=4 = -5y=-6 = y=6/5 Putting y=6/5 in (1) X+6/5=5 5x+6=25 5x=25-6 X= 19/5 Therefore, the value of x is 19/5 and y is 6/5.
  • 1 answers

Sia ? 6 years, 6 months ago


Since tangent to a circle is perpendicular to the radius through the point.
{tex} \therefore \quad \angle O R D = \angle O S D{/tex} = 90°
It is given that {tex} \angle D{/tex} = 90 °. Also, OR = OS. Therefore, ORDS is a square.
Since tangents from an exterior point to a circle are equal in length.
{tex} \therefore{/tex}BP = BQ
CQ = CR
and, DR = DS.
Now,
BP = BQ
{tex}\Rightarrow{/tex}BQ = 27 [{tex}\because{/tex} BP = 27cm(Given)]
{tex}\Rightarrow{/tex} BC - CQ = 27
38 -C Q = 27{tex} [ \because B C = 38 \mathrm { cm } ]{/tex}
CQ = 11cm
CR = 11cm{tex} [ \because C R = C Q ]{/tex}
CD - DR = 11
{tex}\Rightarrow{/tex} 25 -D R = 11 {tex} [ \because C D = 25 \mathrm { cm } ]{/tex}
{tex}\Rightarrow{/tex} DR = 14 cm
But, ORDS is a square. Therefore, OR = DR = 14 cm.
Hence, r = 14 cm.

  • 1 answers

Sia ? 6 years, 6 months ago

Given,
{tex}\frac { 1 } { ( a + b + x ) } = \frac { 1 } { a } + \frac { 1 } { b } + \frac { 1 } { x }{/tex}
{tex}\Rightarrow \quad \frac { 1 } { ( a + b + x ) } - \frac { 1 } { x } = \frac { 1 } { a } + \frac { 1 } { b } \Rightarrow \frac { x - ( a + b + x ) } { x ( a + b + x ) } = \frac { b + a } { a b }{/tex}
{tex}\Rightarrow \quad \frac { - ( a + b ) } { x ( a + b + x ) } = \frac { ( a + b ) } { a b }{/tex}

On dividing both sides by (a+b)
{tex}\Rightarrow \quad \frac { - 1 } { x ( a + b + x ) } = \frac { 1 } { a b }{/tex}

Now cross multiply
{tex}\Rightarrow{/tex} x(a + b + x) = -ab 
{tex}\Rightarrow{/tex} x2 + ax + bx + ab = 0

{tex}\Rightarrow{/tex} x(x +a) + b(x +a) = 0
{tex}\Rightarrow{/tex} (x + a) (x + b) = 0

{tex}\Rightarrow{/tex} x + a = 0 or x + b = 0
{tex}\Rightarrow{/tex} x = -a or x = -b.
Therefore, -a and -b are the roots of the  equation.

  • 1 answers

Sia ? 6 years, 5 months ago

 

 

  1. PA .PB = (PN - AN)(PN + BN)
    = (PN - AN) (PN + AN) {tex}\left[ \begin{array} { c } { \because O N \perp A B } \\ { \therefore N \text { is the mid-point of } A B } \\ { \Rightarrow A N = B N } \end{array} \right]{/tex}
    = PN2 - AN2
  2. Applying Pythagoras theorem in right triangle PNO, we obtain
    OP2 = ON2 + PN2
    {tex}\Rightarrow{/tex}PN2 = OP2 - ON2
    {tex}\therefore{/tex} PN2 - AN2 = (OP2 - ON2) - AN2
    = OP2 - (ON2 + AN2)
    = Op2 _ OA [Using Pythagoras theorem in {tex}\Delta O N A{/tex}]
    = OP2 - OT2 {tex}[ \because O A = O T = \text { radius } ]{/tex}
  3. From (i) and (ii), we obtain
    PA.PB = PN2 - AN2 and PN2 - AN2 = OP2 - OT2
    {tex}\Rightarrow{/tex} PA .PB = OP2 - OT2
    Applying Pythagoras theorem in {tex}\triangle O T P{/tex}, we obtain
    OP2 = OT2 + PT2
    {tex}\Rightarrow{/tex} OP2 - OT2 = PT2
    Thus, we obtain
    PA.PB = OP2 - OT2
    and OP2 - OT2 = PT2
    Hence, PA.PB = PT2
  • 2 answers

Sowmya Sowmya 7 years, 4 months ago

16

Kaira Goenka 7 years, 4 months ago

16
  • 1 answers

Tanzeela Raaz 7 years, 4 months ago

Richa have more money, as 10$ =685.95rs
  • 1 answers

Himay Sankhe 7 years, 4 months ago

root2 is an irrational no. root3 is an irrational no. root5 is an irrational no. We know that sum of two irrational no. is an irrational no. Therefore,root2+root3+root5 is an irrational no.
  • 1 answers

Sunita Lakhanpal 7 years, 4 months ago

Search on google
  • 1 answers

Khushi Gahlot 7 years, 4 months ago

Ronak obviously
  • 2 answers

Anubhav Kumar Singh 7 years, 4 months ago

2/3 x 3 =2 (3 will be cancelled)

Shreyas Karkera 7 years, 4 months ago

2/3*3=0.67*3=2.01
  • 0 answers
  • 3 answers

Monish Kumar 7 years, 4 months ago

Take n is equal to 1 then 1 - 4n is equal to -3 the value of first term is -3. when we take n is equal to 2 then the value of second term is equal to -7. Now the common difference is 4 now using and sum formula -a25=93

Vishnu Bist 7 years, 4 months ago

Kese

Abhuday Moonat 7 years, 4 months ago

Take n =1,n=2
  • 1 answers

Chirag Saini 7 years, 4 months ago

There is no specific formula for it . We can use median formula
  • 2 answers

Chirag Saini 7 years, 4 months ago

GIVEN := A1=N A2=2N A3=3N PROOF:= S2-S1 =A2+A1-A1= A2 EQUATION. 1 A2 =2N TAKING RHS 3(S2-S1) = 3A2.(PROVED. SEE EQUATION. 1) =3(2N) (A2 =2N) =6N. EQUATION OF RHS TAKING LHS S3 =A1+A2+A3 =N+2N+3N =6N. EQUATION OF LHS ON Comparing equation of LHS and RHS We can say that LHS = RHS S3=3(S2-S1) HAVE A NICE DAY

Dhillon Boy Dhillon 5 years, 8 months ago

hsjdhxjsakbsjdkddjhdjz
  • 1 answers

Sia ? 6 years, 6 months ago

Given, an = 3 + 2n
a=  3 + 2{tex}\times{/tex}1 = 5
a2 = 3 + 2{tex}\times{/tex}2 = 7
a3 = 3 + 2{tex}\times{/tex}3 = 9
Thus the series is 5, 7, 9,......in which a = 5 and d = 7 - 5 =  2
{tex}\therefore \quad S _ { n } = \frac { n } { 2 } ( 2 a + ( n - 1 ) d ){/tex}
Sn = {tex}\frac n2{/tex}[2(5) + (n - 1)2]
Sn = {tex}\frac n2{/tex}[10 + 2n - 2]
Sn = {tex}\frac n2{/tex}[8 + 2n]
Sn = 4n + n2
 

  • 1 answers

Utkarsh Dwivedi 7 years, 4 months ago

a+2y+a+6y=6..........1. And (a+2y)(a+6y)=8........2. Then solve and put the valuw of y in a+15y
  • 1 answers

Amanraj Aryan 7 years, 4 months ago

Satyagrah is an idea by which figh for a truth causes against in justic is fought without any voilence
  • 1 answers

Sia ? 6 years, 5 months ago

Draw {tex}A E \perp B C{/tex}
In {tex}\Delta{/tex}AEB and {tex}\Delta{/tex}AEC, we have
          
AB = AC,
AE = AE [Common]
and, {tex}\angle{/tex}B = {tex}\angle{/tex}C [{tex}\because{/tex} AB = AC]
{tex}\therefore \quad \Delta A E B \cong \Delta A E C{/tex}
{tex}\Rightarrow{/tex} BE = CE [by CPCT]
Since {tex}\Delta{/tex}AED and {tex}\Delta{/tex}ABE are right triangles right-angled at E.
Therefore,
{tex}\Rightarrow{/tex} AD2 = AE2 + DE2 and AB2 = AE2 + BE
{tex}\Rightarrow{/tex} AB2 - AD2 = BE- DE2
{tex}\Rightarrow{/tex} AB2 - AD2 = (BE+ DE) (BE - DE)
{tex}\Rightarrow{/tex} AB2 - AD2 = (CE+ DE) (BE - DE) [{tex}\because{/tex} BE = CE ]
{tex}\Rightarrow{/tex} AB2- AD= CD·BD
Hence, AB2 - AD2 = BD·CD

  • 2 answers

Dibya Ranjan Das Das 7 years, 4 months ago

Theorem:If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points,the other two sides are divided in the same ratio. Ans.Given:ABC is a∆ BC||DE To Prove:AD by BD=AE by EC Construction:Join DC and BE Draw ENperpendicular to AB and DM perpendicular to AE. Proof:BC||DE(given) ar.∆BDE = ar.∆DEC....................eq.1(∆on same base bet.same parallel.) ar.ADE by ar.BDE=1/2×AD×EN by 1/2×BD×EN ar.ADE by ar.BDE=AD by BD.............eq.2 ar.AED by ar.DEC=1/2×AE×DM by 1/2×EC×DM ar.AED by ar.DEC=AE by EC..............eq.3 Comparing 2 and 3 using 1 ar.ADE by ar.BDE=ar.AED by ar.DEC AD by BD=AE by EC(proved) {AD by BD+1=AE by EC+1 AD+BD by BD= AE+EC by EC AB by BD=AC by EC Taking reciprocal BD by AB= EC by AC 1-BD by AB= 1-EC by AC AB-BD by AB= AC-EC by AC AD by AB =AE by AC}corrolary.

Kanika Yadav 7 years, 4 months ago

According to this theorm ,a line is drawn parallel to the one side of a triangle to interset the other two sides in distinct points then the other two sides are divided in same ratio. If in triangle ABC , DE parallel AD then by BPT theorm AD/DB equal AE/EC
  • 1 answers

Sia ? 6 years, 4 months ago

We have,
{tex}\frac{1}{{x - 3}} + \frac{2}{{x - 2}} = \frac{8}{x}{/tex}
{tex}\Rightarrow \frac{{1(x - 2) + 2(x - 3)}}{{(x - 3)(x - 2)}} = \frac{8}{x}{/tex}
{tex}\Rightarrow \frac{{x - 2 + 2x - 6}}{{(x - 3)(x - 2)}} = \frac{8}{x}{/tex}
{tex}\Rightarrow \frac{{3x - 8}}{{{x^2} - 2x - 3x + 6}} = \frac{8}{x}{/tex}
{tex}\Rightarrow \frac{{3x - 8}}{{{x^2} - 5x + 6}} = \frac{8}{x}{/tex}

Cross multiply,
{tex}\Rightarrow{/tex} {tex}x(3x-8)=8(x^2-5x+6){/tex}
{tex}\Rightarrow{/tex} {tex}3x^2-8x=8x^2-40x+48{/tex}
{tex}\Rightarrow{/tex} {tex}8x^2-40x+48-3x^2+8x=0{/tex}
{tex}\Rightarrow{/tex} {tex}5x^2-32x+48=0{/tex}

Factorise the equation,
{tex}\Rightarrow{/tex} 5x2 - 20x - 12x + 48 = 0
{tex}\Rightarrow{/tex} 5x(x - 4) - 12(x - 4) = 0
{tex}\Rightarrow{/tex} (5x - 12) (x - 4) = 0
{tex}\Rightarrow{/tex} (5x - 12) = 0 or (x - 4) = 0
{tex} \Rightarrow x = \frac{{12}}{5}{/tex} or x = 4

  • 1 answers

Sia ? 6 years, 5 months ago

Let two men start from the point C with velocity v each at the same time.
Also, {tex}\angle BCA = {45^o}{/tex} 
Since, A and B are moving with same velocity v, so they will cover same distance in same time.
Therefore, {tex}\triangle ABC{/tex} is an isosceles triangle with AC = BC.
Now, draw {tex}CD \bot AB{/tex} 
Let at any instant t, the distance between them is AB

Let AC = BC = x and AB = y
In {tex}\triangle ACD{/tex} and {tex}\triangle DCB{/tex},
{tex}\angle CAD = \angle CBD{/tex} {tex}\left[ {\because AC = BC} \right]{/tex} 
{tex}\angle CDA = \angle CDB = {90^o}{/tex} 
{tex}\therefore \angle ACD = \angle DCB{/tex} 
or {tex}\angle ACD = \frac{1}{2} \times \angle ACB{/tex} {tex} \Rightarrow \angle ACD = \frac{1}{2} \times {45^o}{/tex} 
{tex} \Rightarrow \angle ACD = \frac{\pi }{8}{/tex} 
{tex}\therefore \Rightarrow \sin \frac{\pi }{8} = \frac{{AD}}{{AC}}{/tex}
{tex}\therefore \Rightarrow \sin \frac{\pi }{8} = \frac{{y/2}}{x}\,\left[ {\because AD = \frac{y}{2}} \right]{/tex} 
{tex}\Rightarrow \frac{y}{2} = x\sin \frac{\pi }{8}{/tex} 
{tex} \Rightarrow y = 2x\sin \frac{\pi }{8}{/tex} 
Now, differentiating both sides w.r.t t, we get
{tex}\frac{{dy}}{{dx}} = 2.\sin \frac{\pi }{8}.\frac{{dx}}{{dt}}{/tex} 
{tex}= 2.\sin \frac{\pi }{8}.v\,\left[ {\because v = \frac{{dx}}{{dt}}} \right]{/tex} 
{tex}= 2v.\frac{{\sqrt {2 - \sqrt 2 } }}{2}\,\,\left[ {\because \sin \frac{\pi }{8} = \frac{{\sqrt {2 - \sqrt 2 } }}{2}} \right]{/tex} 
{tex} = \sqrt {2 - \sqrt 2 } {/tex} v unit /s
which is the rate at which A and B are being separated.

  • 1 answers

Devansh Gupta 7 years, 4 months ago

4444-444=4000 4000÷200=20

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App