No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Sia ? 6 years, 5 months ago

Suppose that the digits at units and tens place of the given number be x and y respectively.
Thus, the number is {tex}10y + x.{/tex}
The product of the two digits of the number is 20.
Thus, we have {tex}xy = 20{/tex}
After interchanging the digits, the number becomes {tex}10x + y{/tex}
If 9 is added to the number, the digits interchange their places.
Thus, we have
{tex}(10y + x) + 9 = 10x + y{/tex}
{tex}\Rightarrow{/tex} {tex}10y + x + 9 = 10x+ y{/tex}
{tex}\Rightarrow{/tex} {tex}10x + y - 10y - x = 9{/tex}
{tex}9x - 9y = 9{/tex}
{tex}\Rightarrow{/tex}{tex} 9(x - y) = 9{/tex}
{tex}\Rightarrow x - y = \frac{9}{9}{/tex}
{tex}\Rightarrow{/tex} {tex}x - y = 1{/tex}
So, we have the systems of equations
{tex}xy = 20{/tex} ....(i)
{tex}x - y = 1{/tex} ....(ii)
Here x and y are unknowns.
We have to solve the above systems of equations for x and y.
Substituting {tex}x = 1 + y{/tex} from the second equation to the first equation, we get {tex}(1+ y) y = 20{/tex}
{tex}\Rightarrow{/tex} {tex}y + y^2 = 20{/tex}
{tex}\Rightarrow{/tex} {tex}y^2 + y - 20 = 0{/tex}
{tex}\Rightarrow{/tex} {tex}y^2 + 5y - 4y - 20 = 0{/tex}
{tex}\Rightarrow{/tex} {tex}y(y + 5) - 4(y + 5) = 0{/tex}
{tex}\Rightarrow{/tex} {tex}(y + 5)(y - 4) = 0{/tex}
{tex}\Rightarrow{/tex} {tex}y = -5\ or\ y = 4{/tex}
Substituting the value of y in the second equation, we have

x -4 5
y -5 4

Note that in the first pair of solution the values of x and y are both negative. But the digits of the number can't be negative. So, we must remove this pair.
Hence, the number is 10 {tex}\times{/tex} 4 + 5 = 45

  • 2 answers

Chirag Saini 7 years, 4 months ago

Take 2 apple Then take another 2 Count them

Piyush Mandloi 7 years, 4 months ago

(1+1)+(1+1)=2+2
  • 2 answers

Jay Patidar 7 years, 4 months ago

What to do in question? ??

Kannu Kranti Yadav 7 years, 4 months ago

What to do ???
  • 1 answers

Tanu Chourasia 7 years, 4 months ago

Steps Step 1 Divide all terms by a (the coefficient of x2). Step 2 Move the number term (c/a) to the right side of the equation. Step 3 Complete the square on the left side of the equation and balance this by adding the same value to the right side of the equation.
  • 1 answers

Sia ? 6 years, 4 months ago

For sin A,
By using identity {tex}cosec ^ { 2 } A - \cot ^ { 2 } A = 1 \Rightarrow \cos e c ^ { 2 } A = 1 + \cot ^ { 2 } A{/tex}
{tex}\Rightarrow \frac { 1 } { \sin ^ { 2 } A } = 1 + \cot ^ { 2 } A{/tex}
{tex}\Rightarrow \sin A = \frac { 1 } { \sqrt { 1 + \cot ^ { 2 } A } }{/tex}
For secA, 
By using identity {tex}\sec ^ { 2 } A - \tan ^ { 2 } A = 1 \Rightarrow \sec ^ { 2 } A = 1 + \tan ^ { 2 } A{/tex}
{tex}\Rightarrow \sec ^ { 2 } A = 1 + \frac { 1 } { \cot ^ { 2 } A } = \frac { \cot ^ { 2 } A + 1 } { \cot ^ { 2 } A } \Rightarrow \sec ^ { 2 } A = \frac { 1 + \cot ^ { 2 } A } { \cot ^ { 2 } A }{/tex}
{tex}\Rightarrow \sec A = \frac { \sqrt { 1 + \cot ^ { 2 } A } } { \cot A }{/tex}
For tanA,
{tex}\tan A = \frac { 1 } { \cot A }{/tex}

  • 1 answers

Kannu Kranti Yadav 7 years, 4 months ago

U can see the solutions of this exercise in this app.
  • 1 answers

Sia ? 6 years, 5 months ago

Given that at the foot of a mountain the elevation of its summit is 45°; after ascending 1000 m towards the mountain up a slope of 30° inclination, the elevation is found to be 60°. We have to find the height of the mountain.
Let F be the foot and S be the summit of the mountain FOS. Then {tex}\angle O F S = 45 ^ { \circ }{/tex}and therefore, {tex}\angle O S F = 45 ^ { \circ }.{/tex}Consequently, OF = OS = h km (say). Let FP = 1000 m = 1 km be the slope so that {tex}\angle O F P = 30 ^ { \circ }.{/tex}Draw PM {tex}\perp {/tex}OF. join PS. It is given that {tex}\angle M P S = 60 ^ { \circ }.{/tex}
In {tex}\triangle F P L,{/tex}we have

{tex}\sin 30 ^ { \circ } = \frac { P L } { P F }{/tex}
{tex}\Rightarrow \quad P L = P F \sin 30 ^ { \circ } = \left( 1 + \frac { 1 } { 2 } \right) \mathrm { km } = \frac { 1 } { 2 } \mathrm { km }{/tex}
{tex}\therefore \quad O M = P L = \frac { 1 } { 2 } \mathrm { km }{/tex}
{tex}\Rightarrow \quad M S = O S - O M = \left( h - \frac { 1 } { 2 } \right) \mathrm { km }{/tex} ...(i)
Also, {tex}\cos 30 ^ { \circ } = \frac { F L } { P F }{/tex}
{tex}\Rightarrow \quad F L = P F \cos 30 ^ { \circ } = \left( 1 \times \frac { \sqrt { 3 } } { 2 } \right) \mathrm { km } = \frac { \sqrt { 3 } } { 2 } \mathrm { km }{/tex}
Now, h = OS = OF = OL + LF
{tex}\Rightarrow \quad h = O L + \frac { \sqrt { 3 } } { 2 }{/tex}
{tex}\Rightarrow \quad O L = \left( h - \frac { \sqrt { 3 } } { 2 } \right) \mathrm { km }{/tex}
{tex}\Rightarrow \quad P M = \left( h - \frac { \sqrt { 3 } } { 2 } \right) \mathrm { km }{/tex} ...(ii)
In {tex}\triangle S P M,{/tex} we have
{tex}\tan 60 ^ { \circ } = \frac { S M } { P M }{/tex}
{tex}\Rightarrow{/tex} SM = PM . tan60 ° 
{tex}\Rightarrow \quad \left( h - \frac { 1 } { 2 } \right) = \left( h - \frac { \sqrt { 3 } } { 2 } \right) \sqrt { 3 }{/tex}
{tex}\Rightarrow \quad h - \frac { 1 } { 2 } = h \sqrt { 3 } - \frac { 3 } { 2 }{/tex}
{tex}\Rightarrow \quad \sqrt { 3 } h - h = \frac { 3 } { 2 } - \frac { 1 } { 2 }{/tex}
{tex}\Rightarrow \quad h ( \sqrt { 3 } - 1 ) = 1{/tex}
{tex}\Rightarrow \quad h = \frac { 1 } { \sqrt { 3 } - 1 } = \frac { \sqrt { 3 } + 1 } { ( \sqrt { 3 } - 1 ) ( \sqrt { 3 } + 1 ) } = \frac { \sqrt { 3 } + 1 } { 2 } = \frac { 2.732 } { 2 } = 1.366 \mathrm { km }{/tex}
Hence, the height of the mountain is 1.366 km.

  • 1 answers

Sia ? 6 years, 5 months ago

Let a be the first term and d the common difference of the given A.P.
{tex}\therefore S_{p}=\frac{p}{2}{/tex} [2a + (p - 1)d] = q 
{tex}\Rightarrow{/tex} 2a + (p - 1)d {tex}=\frac{2 q}{p}{/tex}  ….(i)
And {tex}S_{q}=\frac{q}{2}{/tex} [2a + (q - 1)d] = p
{tex}\Rightarrow{/tex} 2a + (q - 1)d {tex}=\frac{2 p}{q}{/tex} ….(ii)
Subtracting eq. (ii) from eq. (i) we get
(p - q)d = {tex}\frac{2 q}{p}-\frac{2 p}{q}{/tex} {tex}\Rightarrow{/tex} (p - q)d {tex}=\frac{2\left(q^{2}-p^{2}\right)}{p q}{/tex}
{tex}\Rightarrow{/tex} (p - q)d {tex}=\frac{-2}{p q}{/tex}(p2 - q2)
{tex}\Rightarrow{/tex} (p - q)d {tex}=\frac{-2}{p q}{/tex} (p + q)(p - q) {tex}\Rightarrow d=\frac{-2}{p q}{/tex} (p + q)
Substituting the value of d in eq. (i) we get
2a + (p - 1) {tex}\left[\frac{-2(p+q)}{p q}\right]=\frac{2 q}{p}{/tex}
{tex}\Rightarrow 2 a=\frac{2 q}{p}+\frac{2(p-1)(p+q)}{p q}{/tex}
{tex}\Rightarrow a=\frac{q}{p}+\frac{(p-1)(p+q)}{p q}{/tex}
{tex}a=\frac{q^{2}+p^{2}+p q-p-q}{p q}{/tex}
Now Sp+q {tex}=\frac{p+q}{2}{/tex} [2a + (p + q - 1)d
{tex}=\frac{p+q}{2}\left[\frac{2 q^{2}+2 p^{2}+2 p q-2 q-2 q}{p q}+\frac{(p+q-1)[-2(p+q)}{p q}\right]{/tex}
{tex}=\frac{p+q}{2}\left[\frac{2q^{2} + 2p^{2} + 2pq - 2p - 2q -2p^{2} -2 p q+2 p-2 p q-2 q^{2}+2 q}{p q}\right]{/tex}
{tex}=\frac{p+q}{2}\left[\frac{-2 p q}{p q}\right]{/tex} = -(p + q) hence proved.

  • 1 answers

Aditya Tiwari 7 years, 4 months ago

equation whose degree of x is only 2 and inthe form of axsquare + bx +c
  • 1 answers

Aditi Raj 7 years, 4 months ago

Oswal because it has also topper question printed so that you can take an idea how to write in exam
  • 0 answers
  • 1 answers

Yogita Ingle 7 years, 4 months ago

7 ones + 8 tenth = 7 + 80 = 87
 

  • 1 answers

Yogita Ingle 7 years, 4 months ago

a3 + b3 = (a + b) (a2- ab + b2).

  • 1 answers

Yogita Ingle 7 years, 4 months ago

The Ancient Greek mathematician Archimedes of Syracuse (287-212 BC) is largely considered to be the first to calculate an accurate estimation of the value of pi.

  • 2 answers

Kannu Kranti Yadav 7 years, 4 months ago

I also wants to know as i face the same problem even I Know all formulas.

Satya Raj 7 years, 4 months ago

I also need answer of this question .
  • 2 answers

Sunita Lakhanpal 7 years, 4 months ago

But ansr is dfrnt

Anshika Mittal 7 years, 4 months ago

You can put the values of these digits and solve it
  • 1 answers

Hansika Verma 7 years, 4 months ago

x=1/216
  • 2 answers
Sodium (Na)

A.K. Mahi ? 7 years, 4 months ago

The metal is Sodium(Na)
  • 1 answers

S Sihag 7 years, 4 months ago

Change cosec and sec into 1/ sin and 1/ cos in L.H.S. and also solve R.H.S.
  • 1 answers

Zohran Jamil 7 years, 4 months ago

Ogive is simply a graphical method of finding median
  • 1 answers

Pulkit Jangid 7 years, 4 months ago

Soln: Algebraical soln : - The given eqn: are 2x+3y=5 -( i ) X+y=2. -( ii ) Now Graphical soln : - Now from ( i ) , we get : - 2x=5 - 3y ( iii ) Now from ( ii ) ,we get : - X=2 - y ( iv ) Now put y = 0 in eqn ( iii ) ,we get 2x=5 -3 × 0 Or , 2x = 5 - 0 Or , 2x = 5 Or , x = 5/2
  • 0 answers
  • 0 answers
  • 2 answers

Dibya Ranjan Das Das 7 years, 4 months ago

Let the speed of boat be X km/hr. And speed of current be Y km/hr. Time=Distance/Speed Speed in downstream=x+y km/hr. Speed in upstream=x-y km/hr. ATQ,20/x+y=2 2(x+y)=20 x+y=10.................eq.1 4/x-y=2 2(x-y)=4 x-y=2..................eq.2 Adding 1&2 x+y=10 x-y=2. _________ 2x=12 x=6 Putting value of x x-y=2 Y=4

..... ...... 7 years, 4 months ago

6 km/hr and 4 km/hr respectively.
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App