No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Sia ? 6 years, 4 months ago

Given equation is {tex}x^2 - 2kx + (7k - 12) = 0{/tex}.
Here {tex}a = 1,\ b = - 2k,\ c = 7k -12{/tex}
{tex}D = b^2 - 4ac{/tex}

{tex}\Rightarrow{/tex}D = (-2k)2 - 4 {tex}\times{/tex} 1 {tex}\times{/tex} (7k-12)
= 4k2 - 28k + 48
The equation has equal roots, then D = 0
{tex}\Rightarrow{/tex}{tex}4k^2 - 28k + 48 = 0{/tex}

{tex}\Rightarrow{/tex} k2 - 7k + 12 = 0  

{tex}\Rightarrow {/tex}(k - 3)(k - 4) = 0

{tex}\Rightarrow{/tex} k = 3,4.

  • 1 answers

Sia ? 6 years, 4 months ago

1 pound (lb) = 16 ounces (oz) = 0.454 kilogram (kg)

  • 1 answers

Anwaya Kumar Nayak 7 years, 4 months ago

Ncert question or rd sharma
  • 1 answers

Sia ? 6 years, 5 months ago

Let the length and breadth of the rectangle be x units and y units respectively.
Then, area of the rectangle = xy sq units.
Case I When the length is reduced by 5 units and the breadth is increased by 2 units.
Then, new length = {tex}(x - 5){/tex} units and
new breadth = {tex}(y+ 2){/tex} units.
{tex}\therefore{/tex} new area = {tex}(x - 5)(y + 2){/tex} sq units
{tex}\therefore{/tex} {tex}xy - ( x - 5)(y+ 2) = 80{/tex} {tex}\Rightarrow{/tex} {tex}5y - 2x = 70{/tex} ..... (i)
Case II When the length is increased by 10 units and the breadth is decreased by 5 units.
Then, new length = {tex}(x  + 10){/tex} units
and new breadth = {tex}(y - 5){/tex} units.
{tex}\therefore{/tex} new area = {tex}(x + 10)(y - 5){/tex}sq units.
{tex}\therefore{/tex} {tex}(x + 10)(y - 5 ) - xy = 50{/tex}
{tex}\Rightarrow{/tex} {tex}10y - 5x = 100{/tex} {tex}\Rightarrow{/tex} {tex}2y - x = 20{/tex}. ...(ii)
On multiplying (ii) by 2 and subtracting the result from (i), we get y = 30.
Putting y = 30 in (ii), we get
{tex}(2\times 30) - x = 20{/tex} {tex}\Rightarrow{/tex} {tex}60 - x = 20{/tex}

{tex}\Rightarrow{/tex} {tex}x = (60 - 20) = 40.{/tex}
{tex}\therefore{/tex} {tex}x = 40\ and\ y = 30.{/tex}
Hence, length = 40 units and breadth = 30 units.

  • 0 answers
  • 1 answers

Dibya Ranjan Das Das 7 years, 4 months ago

Cos A=1/sec A Sin A=√1-cos sq. A=√1-1/sec sq.A=√sec sq.A-1/sec sq.A Tan A=√sec sq.A-1 Cot A=1/tan A=1/√sec sq.A-1 Cosec A=1/sin A=1/√sec sq.A-1/sec A
  • 1 answers

Sia ? 6 years, 5 months ago

 A, B, C, are interior angles of a {tex}\Delta {/tex}
{tex}\because A + B + C = 180 ^ { 0 }{/tex}
{tex}\Rightarrow B + C = 180 ^ { 0 } - A \Rightarrow \frac { B + C } { 2 } = 90 ^ { 0 } - \frac { A } { 2 }{/tex}
{tex}\Rightarrow \sin \frac { \mathrm { B } + \mathrm { C } } { 2 } = \sin \left( 90 ^ { \circ } - \frac { \mathrm { A } } { 2 } \right) \left[ \because \sin \left( 90 ^ { 0 } - \theta \right) = \cos \theta \right]{/tex}
{tex}\Rightarrow \sin \frac { \mathrm { B } + \mathrm { C } } { 2 } = \cos \frac { \mathrm { A } } { 2 } \text { proved }{/tex}
LHS = RHS

  • 1 answers

Sia ? 6 years, 4 months ago

Check NCERT solutions here : https://mycbseguide.com/ncert-solutions.html

  • 1 answers

K.N Girish Girish 7 years, 4 months ago

Introduction
  • 0 answers
  • 1 answers

Sudheer Panda 7 years, 4 months ago

n/2×(a+l) and n/2×(2a+(n-1)×d)
  • 1 answers

Sudheer Panda 7 years, 4 months ago

(0+0)never be 1
  • 0 answers
  • 1 answers

Anshika Mittal 7 years, 4 months ago

Jo angle nahi pta usse x and y let kar lo or usse A maan lo A (x,y )or fir (3,0 ) or (6,0 )ko a sath alag alag distance formula se solve kar lo fir jo bhi aaye use ek dosre ke equal rahk lo because it is equilateral triangle so it's all sodes are equal toh jab tumm un dono ko ek dusre ke equal ŕakho ge then you get the answer ☺
  • 3 answers

Aman ??? 7 years, 4 months ago

For maths Number system - weightage 06 Algebra - weitage 20 Co-ordinate geometry - weightage 06 Geometry - weightage 15 Trignometry - weightage 12 Mensuration - weightage 10 Statistics and probability - weightage 11 Total - 80 marks 1 marks - 6 ques. 2 marks - 6 ques. 3 marks - 10 ques. 4 marks - 8 ques. Total - 30 ques. These blue print is not officially declared but it is 95% correct

Sonu Sonu 7 years, 4 months ago

2019

Sonu Sonu 7 years, 4 months ago

Mujha mathematics ka cbsc paper bata do bhai
  • 1 answers

Sia ? 6 years, 6 months ago

The given equation is
{tex}\Rightarrow{/tex} 3x2 +11x + 10 = 0
Now, we have to find two numbers such that their sum is 11 and product is 3{tex}\times{/tex}10 = 30. Clearly, 5 +6 =11 and 5{tex}\times{/tex}6 = 30
{tex}\Rightarrow{/tex} 3x2 + 6x + 5x + 10 = 0
{tex}\Rightarrow{/tex} 3x(x + 2) +5(x + 2) = 0
{tex}\Rightarrow{/tex} (3x+5)(x+2) = 0
Either, 3x+5 =0 {tex}\Rightarrow{/tex} {tex}{/tex} {tex}x= - \frac{5}{3}{/tex}
Or, x+2 =0 {tex}\Rightarrow{/tex} x = -2
Hence, the required roots of given equation are -2 and {tex}-\frac{{5}}{3}{/tex}

  • 1 answers

Sia ? 6 years, 6 months ago

Given,
{tex}\frac { 1 } { ( a + b + x ) } = \frac { 1 } { a } + \frac { 1 } { b } + \frac { 1 } { x }{/tex}
{tex}\Rightarrow \quad \frac { 1 } { ( a + b + x ) } - \frac { 1 } { x } = \frac { 1 } { a } + \frac { 1 } { b } \Rightarrow \frac { x - ( a + b + x ) } { x ( a + b + x ) } = \frac { b + a } { a b }{/tex}
{tex}\Rightarrow \quad \frac { - ( a + b ) } { x ( a + b + x ) } = \frac { ( a + b ) } { a b }{/tex}

On dividing both sides by (a+b)
{tex}\Rightarrow \quad \frac { - 1 } { x ( a + b + x ) } = \frac { 1 } { a b }{/tex}

Now cross multiply
{tex}\Rightarrow{/tex} x(a + b + x) = -ab 
{tex}\Rightarrow{/tex} x2 + ax + bx + ab = 0

{tex}\Rightarrow{/tex} x(x +a) + b(x +a) = 0
{tex}\Rightarrow{/tex} (x + a) (x + b) = 0

{tex}\Rightarrow{/tex} x + a = 0 or x + b = 0
{tex}\Rightarrow{/tex} x = -a or x = -b.
Therefore, -a and -b are the roots of the  equation.

  • 2 answers

Niyati Gupta 7 years, 4 months ago

Thanx

Raushan Kumar 7 years, 4 months ago

First of all let us assume that the cordinates of third side is (x,y) and we know that all sides of triangle are equal so , we use distance formula and find the distance of one side from the two coordinates and then find the distance of another two sides in terms of x and y and then corelate the equation
  • 4 answers

Aryan Jain 7 years, 4 months ago

Pakistan bhukha pyasa, pbp. Hindustan Hara bhara

Niyati Gupta 7 years, 4 months ago

PBP-Papa Bear Piyoge ;HHB- Ha Ha Beta

Gourav Shrivastava 7 years, 4 months ago

PBP Pandit Badri Prsad 1)--------= ------------------------------- HHB Har Har Bhole 2)sinA=P/H CosA=B/H tanA=P/B Cosec=H/P Cot=H/B Sec=B/P

Niyati Gupta 7 years, 4 months ago

Yes
  • 1 answers

Srijani Mitra 7 years, 4 months ago

First assume that √6 is arational no. Then , √6= p by q form ,where p & q are integers ,q is not equals to zero and p&q are co-primes . Squaring both the sides 6= p sq. by q sq. = p sq.= 6q sq. -[1] i.e. p sq. is divisible by 6. So, p is also divisible by 6. Then , we can write p= 6r squaring both the sides p sq.=12r sq. 2 q sq= 4r sq. -[from equ. (1)] q sq. =4r sq. by 2 => q sq. =2r sq. -(2) i.e. q sq. Is divisible by 2 So, q is also divisible by 6. Since, we can find p&q have a common factor between them (i.e. 2) In our contradicts & assumption √3 is not a rational number. It is an irrational no.
  • 1 answers

Sia ? 6 years, 6 months ago

We have to prove that {tex} \sqrt6{/tex} is an irrational number.

Let {tex}\sqrt6{/tex} be a rational number.
{tex}\therefore \quad \sqrt { 6 } = \frac { p } { q }{/tex}
where p and q are co-prime integers and {tex}q \neq 0{/tex}
On squaring both the sides, we get,
or, {tex}6 = \frac { p ^ { 2 } } { q ^ { 2 } }{/tex}
or, p2 = 6q2
{tex}\therefore{/tex} p2 is divisible by 6.
p is divisible by 6........(i)
Let p = 6r for some integer r
or, p2 = 36r2
6q2= 362 [∵ p2 = 6q2]
or, q2 = 6r2
or, q2 is divisible by 6.
{tex}\therefore{/tex}q is divisible by 6..........(ii)
From (i) and (ii)
p and q are divisible by 6, which contradicts the fact that p and q are co-primes.
Hence, our assumption is wrong.
{tex}\therefore{/tex} {tex}\sqrt6{/tex} is irrational number.

  • 3 answers

Kannu Kranti Yadav 7 years, 4 months ago

When 2 is divided by 10 then it gives us quotient 0.2

Jennifer Sadioura 7 years, 4 months ago

totally wrong ques????

Jaspreet Kaur 7 years, 4 months ago

The ques. is wrong bread....
  • 1 answers

Raushan Kumar 7 years, 4 months ago

If these points are collinear then the area of triangle formed by the points is 0 so by using the formula of area of triangle we can detect
  • 1 answers

Ashish Singh 7 years, 4 months ago

1
  • 2 answers

Anu Bagde 7 years, 4 months ago

Wrong answer

Ashish Singh 7 years, 4 months ago

√3+4√2/2√3
  • 1 answers

Sia ? 6 years, 6 months ago

Let a be any odd positive integer, then on dividing a by b, we have

 a = bq+r,{tex}​​​​0 \leqslant r < b{/tex}.....(i) [by Euclid's division lemma]

On putting b = 2 in Eq.(i), we get

 a = 2q+r, {tex}0\leqslant r < 2{/tex}
 ⇒  r = 0 or 1

If r = 0, then a = 2q, which is divisible by 2. So, 2q is even.

If {tex}r = 1{/tex}, then {tex}a = 2q + 1{/tex}, which is not divisible by 2. So {tex}(2q+1){/tex} is odd.

Now, as a is odd, so it cannot be of the form 2q.
Thus, any odd positive integer a is of the form (2q+1).

Now, consider a2 = (2q+1) = 4q+ 1 + 4q  {tex}\lbrack\therefore(x+y)^2=x^2+y^2+2xy\rbrack{/tex}

= 4( q+ q ) + 1 = 4m + 1, where m = q2 + q

Hence, for some integer m, the square of any odd integer is of the form 4m+1.

Hence Proved.

  • 1 answers

Sejal Ameta 7 years, 4 months ago

An integer is a number that can be written without a fractional component.
  • 2 answers

Jaspreet Kaur 7 years, 4 months ago

Such a easy question

Jaspreet Kaur 7 years, 4 months ago

36

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App