No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 0 answers
  • 1 answers

Keshav Sharma 7 years, 4 months ago

Bhai question wrong h .
  • 2 answers

Harsh Verma 7 years, 4 months ago

-Cofficient of x / cofficient of xsquare

Ashish Shukla 7 years, 4 months ago

-b/a
  • 5 answers

Dinesh Kumar Shukla 7 years, 4 months ago

Sn=n/2[2a+(n-1)d]

Ashish Chandra 7 years, 4 months ago

Sn= n/2(2a+(n -1)d)

Harsh Verma 7 years, 4 months ago

Sn = n/2(a+l)

Laawanya Sivakumar 7 years, 4 months ago

If the last term is given we should use sn=n/2(2a+(n-1)d)

Laawanya Sivakumar 7 years, 4 months ago

Sn =n/2(2a+(n-1))d
  • 1 answers

Sia ? 6 years, 6 months ago

LCM of 18,24 and 36
18 = 2 {tex}\times{/tex} 32
24 = 23 {tex}\times{/tex} 3
36 = 22 {tex}\times{/tex} 32
LCM (18,24,36) = 2{tex}\times{/tex} 32 = 72

Hence if any number is divisible by 72 that will be divisible by 18,24 and 36 also.
Now the largest 6 digit number is 999999

On dividing 999999 by 72 we get

{tex}\;999999=13888\times72+\;63=999936+63{/tex}
Hence 999936 is the greatest 6 digit number divisible by 18,24 and 36.

  • 1 answers

Sia ? 6 years, 5 months ago

Let the numbers are x and y.
Given: {tex}\frac{x}{y}{/tex} = {tex}\frac{4}{5}{/tex}
{tex}\Rightarrow{/tex} 5x = 4y
{tex}\Rightarrow{/tex} 5x - 4y = 0 .......(1)
When 30 is subtracted from both x & y, the ratio becomes 1 : 2
{tex}{/tex}i.e. {tex}\frac{x - 30}{y - 30}{/tex} = {tex}\frac{1}{2}{/tex}
{tex}\Rightarrow{/tex} 2x - 60 = y - 30
{tex}\Rightarrow{/tex} 2x - y - 30 = 0.........(2)
Thus the two linear equations are:
5x - 4y = 0 .......(1)
2x - y - 30 = 0.........(2)

Points Coordinate table for 5x - 4y = 0 is 

<th scope="row">x</th> <th scope="row">y</th>
0 4 8
0 5 10

Points Coordinate Table for 2x - y - 30 = 0 is 

<th scope="row">x</th> <th scope="row">y</th>
15 12 10
0 -6 -10


Graphical representation of pair of linear equations is shown in graph.

  • 1 answers

Sia ? 6 years, 6 months ago

We have,
x = asec{tex}\theta{/tex} + btan{tex}\theta{/tex} and y = atan{tex}\theta{/tex} + bsec{tex}\theta{/tex}
LHS = (x2 - y2) = (asec{tex}\theta{/tex} + btan{tex}\theta{/tex})2 - (atan{tex}\theta{/tex} + bsec{tex}\theta{/tex})2
= (a2sec2{tex}\theta{/tex} + b2tan2{tex}\theta{/tex} + 2absec{tex}\theta{/tex}tan{tex}\theta{/tex}) - (a2tan2{tex}\theta{/tex} + b2sec2{tex}\theta{/tex} + 2absec{tex}\theta{/tex}tan{tex}\theta{/tex})
= a2(sec2{tex}\theta{/tex} - tan2{tex}\theta{/tex}) - b2(sec2{tex}\theta{/tex} - tan2{tex}\theta{/tex})
= a- b2 = RHS
Therefore, LHS = RHS

  • 1 answers

Lovely Devnani 7 years, 4 months ago

RQuestion-1 The following table shows marks secured by 140 students in an examination: Marks number of student 0-10 20 10-20 24 20-30 40 30-40 36 40-50 20 Calculate mean marks by using all the three methods, i.e., direct method, assumed mean method and step-deviation method.
  • 0 answers
  • 1 answers

Sia ? 6 years, 6 months ago

Given: {tex}\triangle {/tex}ABC {tex} \sim {/tex}{tex}\triangle {/tex}DEF
AM is a median in
{tex}\triangle {/tex}ABC and DN is the corresponding median in {tex}\triangle {/tex}DEF
To prove:
{tex}\frac{{area\vartriangle ABC}}{{area\vartriangle DEF}} = \frac{{A{M^2}}}{{D{N^2}}}{/tex}
Proof: {tex}\triangle {/tex}DBC {tex} \sim {/tex}{tex}\triangle {/tex}DEF
{tex}\Rightarrow {/tex} {tex}\angle{/tex} A = {tex}\angle{/tex} D, {tex}\angle{/tex} B = {tex}\angle{/tex} E, {tex}\angle{/tex} C = {tex}\angle{/tex} F and

Also, {tex}\frac{{area\vartriangle ABC}}{{area\vartriangle DEF}}{/tex}={tex}\frac{{A{B^2}}}{{D{E^2}}} = \frac{{B{C^2}}}{{E{F^2}}} = \frac{{A{C^2}}}{{D{F^2}}}{/tex}........(i)[area theorem]
Now,{tex}\frac{{AB}}{{DE}} = \frac{{BC}}{{EF}} = \frac{{\frac{1}{2}BC}}{{\frac{1}{2}EF}} = \frac{{BM}}{{EN}}{/tex}..............(ii)
In {tex}\triangle {/tex}ABM and DEN
{tex}\angle{/tex} B= {tex}\angle{/tex} E and {tex}\frac{{AB}}{{DE}} = \frac{{BM}}{{EN}}{/tex} [From (ii)]
{tex}\Rightarrow {/tex} {tex}\triangle {/tex}ABM {tex} \sim {/tex}{tex}\triangle {/tex}DEN [SAS similarity]
{tex}\Rightarrow {/tex}{tex}\frac{{area\vartriangle ABM}}{{area\vartriangle DEN}} = \frac{{A{B^2}}}{{D{E^2}}} = \frac{{A{M^2}}}{{D{N^2}}} = \frac{{B{M^2}}}{{E{N^2}}}{/tex}............(iii)
From (i) and (iii), we get
{tex}\frac{{area\vartriangle ABC}}{{area\vartriangle DEF}} = \frac{{A{M^2}}}{{D{N^2}}}{/tex}

  • 2 answers

Durga Verma 7 years, 4 months ago

??

Aditya Kumar 7 years, 4 months ago

AP find karna hai easy hai ye Dekho (a) diya hua hai 3 aur (d) ho jaiye ga 11-3 = 8 Aur Tn = 803 hai bas formula pe rakhoo Tn = a + (n-1)d 803 = 3 + (n-1)8
  • 3 answers

Aarsi Chaudhary 7 years, 4 months ago

(a+b) ka hole square-2ab

Rishabh Tripathi 7 years, 4 months ago

(a+b)ka hole square

Ujwal Tupe 7 years, 4 months ago

(a+b)(a+b)
  • 1 answers

Visnu Anand 7 years, 4 months ago

x=1. Y=1
  • 1 answers

Sakshi Naphade 7 years, 4 months ago

∆ADC and ∆BAC Angle ADC=angle BAC Angle C =angle C Hence ∆ADC~∆BAC CA/CD=CB/CA Hence CA2=CB.CD Proved
  • 1 answers

Loveleen Kaur 7 years, 4 months ago

5 cosec^2 x - 5 cot^2 x 5 ( cosec^2 x - cot^2 x ) 5 ( 1 ) [since: cosec^2 theta - cot^2 theta=1] Therefore, Answer = 5
  • 1 answers

Dibya Ranjan Das Das 7 years, 4 months ago

Given:AD bisects angle A To prove:BD/DC=AB/AC Construction:Extend AB to E such that CE parallel to AD. Proof:angle BAD=angle DAC (given) AD paralel CE angle BAD=angle AEC ( corresponding angle) angle DAC=angle AEC angleDAC=angleACE(alt.int.angle) angle ACE=angle AEC So,AC=AE In ∆BEC AD parallel CE BD/DC=BA/AE(by bpt) BD/DC=AB/AC(proved)
  • 5 answers

U.Vamshi Krishna 7 years, 4 months ago

Nearly 95%.But the questions will not be direct i.e.,they may be twisted questions.

Kannu Kranti Yadav 7 years, 4 months ago

No , last year 90% paper of maths and scientist were from NCERT only.

Sapna Jain 7 years, 4 months ago

28 or 29

Yash Deo 7 years, 4 months ago

S. S. T

Sapna Jain 7 years, 4 months ago

Konse subject me
  • 2 answers

Raju Verma 7 years, 4 months ago

Yes

Raju Verma 7 years, 4 months ago

1 que
  • 4 answers

Mashir Anwar 7 years, 4 months ago

1/√2

Sapna Jain 7 years, 4 months ago

1/√2

Yugi Nagar 7 years, 4 months ago

1/√2

Maneesh Verma 7 years, 4 months ago

1/√2
  • 1 answers

Pratyush Krishnan 7 years, 4 months ago

Find it by assuming it to be rational in the form p/q. Prove that the assumption is wrong by substituting and equating wherever necessary! Simple!!!☺️
  • 4 answers

Lovely Boy 7 years, 4 months ago

Or bhi aage khud dhund le

Lovely Boy 7 years, 4 months ago

1000009o00098990000000000000000000000000000000000000000

Sapna Jain 7 years, 4 months ago

Not defined

Ajay Singh 7 years, 4 months ago

Infinite
  • 5 answers

Lovely Boy 7 years, 4 months ago

A word

Sapna Jain 7 years, 4 months ago

P/b

Aditya Kumar 7 years, 4 months ago

Beta tum phale question thick se likhooo..... Ok Aur sin ka matlb x ke kaisa hai jaiye mathematics me hum log koi angle ya phir valu ko x mante hai usi thar se ye bhi wohii hai

Anurag Rawat 7 years, 4 months ago

P/h

Durga Verma 7 years, 4 months ago

Sin=perpendicular/hypotenuse
  • 1 answers

Lovely Boy 7 years, 4 months ago

By divide the number by7
  • 1 answers

Sia ? 6 years, 6 months ago

{tex}\frac{175}{15}=11.667{/tex}
Hence 175 is not divisible by 15
But LCM of two numbers should be divisible by their HCF.
{tex}\therefore{/tex} Two numbers cannot have their HCF as 15 and LCM as 175.

  • 1 answers

Sia ? 6 years, 6 months ago

Let us suppose that one man alone can finish the work in x days and one boy alone can finish it in y days. Then,
one man's one day's work {tex}= \frac { 1 } { x }{/tex}
One boy's one day's work {tex}= \frac { 1 } { y }{/tex}
{tex}\therefore{/tex} Eight men's one day's work = {tex}\frac { 8 } { x }{/tex}
{tex}12\ boy's{/tex} one day's work = {tex}\frac { 12 } { y }{/tex}
According to question it is given that  {tex}8\ men{/tex} and {tex}12\ boys{/tex} can finish the work in {tex}10\ days{/tex}
{tex}10 \left( \frac { 8 } { x } + \frac { 12 } { y } \right) = 1 \Rightarrow \frac { 80 } { x } + \frac { 120 } { y } = 1{/tex} .................(i)
Again, {tex}6\ men{/tex} and {tex}8\ boys{/tex} can finish the work in {tex}14\ days{/tex}.
{tex}\therefore \quad 14 \left( \frac { 6 } { x } + \frac { 8 } { y } \right) = 1 \Rightarrow \frac { 84 } { x } + \frac { 112 } { y } = 1{/tex} ...........(ii)
Putting {tex}\frac { 1 } { x } = u{/tex} and {tex}\frac { 1 } { y } = v{/tex} in equations (i) and (ii), we get
{tex}80u + 120u - 1 = 0{/tex}
{tex}84u + 112v - 1 = 0{/tex}
By using cross-multiplication, 
{tex}\Rightarrow \frac { u } { - 120 + 112 } = \frac { - v } { - 80 + 84 } = \frac { 1 } { 80 \times 112 - 120 \times 84 }{/tex}
{tex}\Rightarrow \quad \frac { u } { - 8 } = \frac { v } { - 4 } = \frac { 1 } { - 1120 }{/tex}
{tex}\Rightarrow \quad u = \frac { - 8 } { - 1120 } = \frac { 1 } { 140 } \text { and } v = \frac { - 4 } { - 1120 } = \frac { 1 } { 280 }{/tex}
{tex}u = \frac { 1 } { 140 } \Rightarrow \frac { 1 } { x } = \frac { 1 } { 140 } \Rightarrow x = 140{/tex}
{tex}v = \frac { 1 } { 280 } \Rightarrow \frac { 1 } { y } = \frac { 1 } { 280 } \Rightarrow y = 280{/tex}
One man alone can finish the work in {tex}140\ days{/tex} and one boy alone can finish the work in {tex}280\ days{/tex}.

  • 3 answers

Sapna Jain 7 years, 4 months ago

1768

Suhail Ghaffar 7 years, 4 months ago

First of all we must know that Divisior×Quotent+Remainder=A 53×33+19=1768

Pragya . 7 years, 4 months ago

1768

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App