No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Mayank Chhabra 7 years, 4 months ago

It is sufficient if do everything perfectly and theory perfectly as it gives us an idea to solve every question
  • 2 answers

Mayank Chhabra 7 years, 4 months ago

Its theorm :)

Ajay Singh 7 years, 4 months ago

Tum kya puchna chahte ho maths se?? koi ques.,koi therom........... ..?
  • 0 answers
  • 1 answers

Nikki Kushwah 7 years, 4 months ago

Cot10=5.671282
  • 1 answers

Sia ? 6 years, 6 months ago

To prove :
{tex}3 \left( A B ^ { 2 } + B C ^ { 2 } + C A ^ { 2 } \right) = 4 \left( A D ^ { 2 } + B E ^ { 2 } + C F ^ { 2 } \right){/tex}

In triangle sum of squares of any two sides is equal to twice the square of half of the third side, together with twice the square of median bisecting it.
If AD is the median 
{tex}A B ^ { 2 } + A C ^ { 2 } = 2 \left\{ A D ^ { 2 } + \frac { B C ^ { 2 } } { 4 } \right\}{/tex}
or, {tex}2 \left( A B ^ { 2 } + A C ^ { 2 } \right) = 4 A D ^ { 2 } + B C ^ { 2 }{/tex} ...(i)
Similarly by taking BE & CF as medians, 
{tex}2 \left( A B ^ { 2 } + B C ^ { 2 } \right) = 4 B E ^ { 2 } + A C ^ { 2 }{/tex} ...(ii)
{tex}2 \left( A C ^ { 2 } + B C ^ { 2 } \right) = 4 C F ^ { 2 } + A B ^ { 2 }{/tex} ...(iii)
By adding, (i), (ii) and (iii), we get 
{tex}3 \left( A B ^ { 2 } + B C ^ { 2 } + A C ^ { 2 } \right) = 4 \left( A D ^ { 2 } + B E ^ { 2 } + C F ^ { 2 } \right){/tex}
Hence proved.

  • 1 answers

Yogita Ingle 7 years, 4 months ago

Real Numbers:

  • All rational and all irrational number makes the collection of real number. It is denoted by the letter R
  • We can represent real numbers on the number line. The square root of any positive real number exists and that also can be represented on number line
  • The sum or difference of a rational number and an irrational number is an irrational number.
  • The product or division of a rational number with an irrational number is an irrational number.
  • This process of visualization of representing a decimal expansion on the number line is known as the process of successive magnification
  • 4 answers

Nikki Kushwah 7 years, 4 months ago

+

Ajay Singh 7 years, 4 months ago

+

Kanika Singla 7 years, 4 months ago

+

Neha Singh 7 years, 4 months ago

+
  • 1 answers

Aryan Mishra 7 years, 4 months ago

1)sin² +cos² =1 ~ sin²= 1– cos² cos²= 1– sin² 2)1+ tan² = sec² ~ tan² = sec² – 1 1 = sec² – tan² 3)1+ cot² = cosec² ~ cot² = cosec² – 1 1 = cosec² – cot²
  • 1 answers

Sejal Barge 7 years, 4 months ago

a²+b²=c²
  • 1 answers

Sia ? 6 years, 6 months ago


Since AC is a tangent to the inner circle.
{tex}\angle OBC = 90^\circ {/tex}
AC is a chord of the outer circle.
We know that, the perpendicular drawn from the centre to a chord of a circle, bisects the chord.
{tex}AC = 2BC \\ 8=2BC ​​​​​​​{/tex}
{tex}\Rightarrow{/tex} BC = 4 cm
In {tex}\Delta{/tex}OBC,
By Pythagoras theorem,
OC2 = OB2 + BC2
{tex}\Rightarrow{/tex} 52 = r2 + 42
{tex}\Rightarrow{/tex} r2 = 52 - 42
{tex}\Rightarrow{/tex} r2 = 25 - 16
{tex}\Rightarrow{/tex} r2 = 9 cm
{tex}\Rightarrow{/tex} r = 3 cm

  • 2 answers

Shivay Brahmåñ 7 years, 4 months ago

Take n =3q So first n is divisible by 3 Both n+4;n+2is also divided by 3 but it leaves reminder and n does not leave any reminder so n is divisible by 3

Syed Affan 7 years, 4 months ago

N
  • 1 answers

Sia ? 6 years, 6 months ago

{tex}= \frac { 1 + \tan ^ { 2 } A } { 1 + \cot ^ { 2 } A } = \frac { 1 + \tan ^ { 2 } A } { 1 + \frac { 1 } { \tan ^ { 2 } A } } \cdot \because \cot A = \frac { 1 } { \tan A }{/tex}
{tex}= \frac { 1 + \tan ^ { 2 } A } { \frac { \tan ^ { 2 } A + 1 } { \tan ^ { 2 } A } } = \tan ^ { 2 } A \ldots \ldots ( 1 ){/tex}
{tex}\left( \frac { 1 - \tan A } { 1 - \cot A } \right) ^ { 2 } = \left( \frac { 1 - \tan A } { 1 - \frac { 1 } { \tan A } } \right) ^ { 2 }{/tex}
{tex}= \left\{ \frac { 1 - \tan A } { \left( \frac { \tan A - 1 } { \tan A } \right) } \right\} ^ { 2 } = ( - \tan A ) ^ { 2 } = \tan ^ { 2 } A{/tex} ....... (2)

(1) and (2) taken together given the result.

  • 2 answers

Elsa B 7 years, 4 months ago

You can find it in ncert textbook page no 124.

Archit Vijay 7 years, 4 months ago

Dg
  • 2 answers

Kirankumar Jambenal 7 years, 4 months ago

YouTube

Priyanshu Singh 7 years, 4 months ago

10+10÷(10)square +(10)square
  • 1 answers

Priyanshu Singh 7 years, 4 months ago

(-2)+(-1)+3=0
  • 1 answers

Priyanshu Singh 7 years, 4 months ago

On multiplying numerator by 10 and denominater by 1=2
  • 1 answers

Sia ? 6 years, 6 months ago

Given in the quadrilateral ABCD
{tex}\frac{AO}{BO}=\frac{CO}{DO}{/tex}
or, {tex}\frac { A O } { C O } = \frac { B O } { D O }{/tex} ...(i)
Draw EO {tex}\parallel{/tex} AB on

In {tex}\triangle A B D,{/tex} EO {tex}\parallel{/tex} AB  (By construction)
{tex}\therefore {/tex} {tex}\frac { A E } { E D } = \frac { B O } { D O }{/tex} (By BPT)...(ii)
From (i) and (ii) we get 
{tex}\frac{AO}{CO}=\frac{AE}{ED}{/tex}
Hence by converse of BPT in {tex}\triangle{/tex}ADC 
{tex}EO\|CD{/tex}
But {tex}EO \|AB {/tex}
So {tex}AB\|CD {/tex}
Therefore ABCD is a trapezium

  • 0 answers
  • 1 answers

Priyanshu Singh 7 years, 4 months ago

R.s.agarwal ka page no.213
  • 2 answers

Laawanya Sivakumar 7 years, 4 months ago

Comedy

Devansh Gupta 7 years, 4 months ago

Calculator??
  • 3 answers

Devansh Gupta 7 years, 4 months ago

Abhishek ir answer is wrong

Srushti Kunkolienkar 7 years, 4 months ago

but √25 is 5 no ?

Abhishek Varma 7 years, 4 months ago

AB=4,BC=3,AC=25(by pythagoras theorem) SinA=3/25,cosA=4/25,cotA=3/4,secA=25/4,cosecA=25/3.
  • 1 answers

Kannu Kranti Yadav 7 years, 4 months ago

Let , us assume that √2 is rational number then it can be written in the form of a/b where b≠0 and (a,b are co prime numbers). So, √2=a/b, now squaring on both sides gives 2=a²/b²... 2b²=a² so we can say thay a² is divisible by 2 , therefore a is also divisible by 2. Then take a=2c, now putting value ofa and squaring on both sides giv gives us ...... 2b²=4c² => b²=2c² so b² is divisible by 2 therefore b is also divisible by 2. Hence our assumption is wrong , they have other common factor as 2. There fore √2 is irrational.hence, proved
  • 1 answers

Sia ? 6 years, 6 months ago


Given: {tex}\triangle {/tex}ABC {tex} \sim {/tex} {tex}\triangle {/tex}DEF
AM is the bisector of
{tex}\angle{/tex} BAC and is the corresponding bisector of {tex}\angle{/tex} EDF
To prove:{tex}\frac{{area\vartriangle ABC}}{{area\vartriangle DEF}} = \frac{{A{M^2}}}{{D{N^2}}}{/tex}
Proof: {tex}\frac{{area\vartriangle ABC}}{{area\vartriangle DEF}} = \frac{{A{B^2}}}{{D{E^2}}}{/tex}.......(i) [Area theorem]
Now {tex}\triangle {/tex}ABC {tex} \sim {/tex} {tex}\triangle {/tex}DEF
{tex}\Rightarrow {/tex} {tex}\angle{/tex} A = {tex}\angle{/tex} D {tex}\Rightarrow {/tex} {tex}\frac{1}{2}\angle A = \frac{1}{2}\angle D{/tex}
{tex}\Rightarrow {/tex} {tex}\angle{/tex}BAM = {tex}\angle{/tex}EDN
In {tex}\triangle {/tex}ABM and DEN {tex}\angle{/tex} B = {tex}\angle{/tex} E   and {tex}\angle{/tex} BAM= {tex}\angle{/tex}EDN
{tex}\Rightarrow {/tex} {tex}\triangle {/tex}ABM {tex} \sim {/tex} {tex}\triangle {/tex}DEN
{tex}\Rightarrow {/tex} {tex}\frac{{AB}}{{DE}} = \frac{{AM}}{{DN}} \Rightarrow \frac{{A{B^2}}}{{D{E^2}}} = \frac{{A{M^2}}}{{D{N^2}}}{/tex}...................(ii)
{tex}\Rightarrow {/tex} {tex}\frac{{area\vartriangle ABC}}{{area\vartriangle DEF}} = \frac{{A{M^2}}}{{D{N^2}}}{/tex} [From (i) and (ii)] Proved.

  • 1 answers

Jasmine Kaur 7 years, 4 months ago

Has some patience witj lecture on study thr os the equation
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App