No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 0 answers
  • 2 answers

Harshit Mishra 7 years, 4 months ago

Tan a = cot b Tan (90-a)=cot b Cot( 90-A)= cot B 90-A=B 90=B+A Now; A+B=90 Hence proved

Pooja Soni 7 years, 4 months ago

Tan a=cot b Cot (90-a) = cot b 90-a=b 90=a+b A+b=90 It is ask in1-2 no. In exam
  • 1 answers

Ayush Vishwakarma?? 7 years, 4 months ago

It means and.
  • 5 answers

Sachin Chouhan 7 years, 4 months ago

1/4

Kanika Yadav 7 years, 4 months ago

2/8=1/4

Ayush Vishwakarma?? 7 years, 4 months ago

1/4

Mohnish Hari 7 years, 4 months ago

8/2 =4/1

Sakshi Singh 7 years, 4 months ago

3/4
  • 0 answers
  • 3 answers

Soham Deshpande 7 years, 4 months ago

P(x)=x^2+a Given that one zero or root is -3 Then put -3 instead of x (-3)^2+a=0 9+a=0 a=-9

Mohnish Hari 7 years, 4 months ago

x2 +a+3=0 a=x x2+x+3=0 D = 1-4×1×1=3 X = -1+√3/2 & -1-√3/2

Sakshi Singh 7 years, 4 months ago

Putting x= -3 we get a= -9 After factoring it i.e. (x-3)(x+3) We get +3 is another zero
  • 0 answers
  • 1 answers

Poonam Gulzar 7 years, 4 months ago

8x+12y=4 8x+12y=8 _ _. _ y= 4
  • 2 answers

Sanjeet Yadav 7 years, 4 months ago

Let the point be s that is (a, b) then use distance formula for point p and s and then point q and s put it then put the value of a=3and solve it.

Gaurav Kumar 7 years, 4 months ago

Since, A=(3,y) is equidistant from point p and q AP=AQ (3-8)(3-8)+(y+3)(y+3)=(3-7)(3-7)+(y-6)(y-6) By solving it The value of y=1
  • 0 answers
  • 0 answers
  • 1 answers

Manit 3589 7 years, 4 months ago

11
  • 1 answers

Palak Dhiman 7 years, 4 months ago

Learn only sin cos and tan for sin = opposite side by hypotense cos = adjecent side by hypotense tan = sin by cos And other three by reversing the aboves
  • 1 answers

Subject Kk 7 years, 4 months ago

Why u get evergreen solution here
  • 1 answers

Ajay Singh 7 years, 4 months ago

Iet x + y= 5 eqn1. and 2x - 3y=4 eqn2. Then multipling the eqn1. from 2 and eqn2. from 1, then you get 2x + 2y=10 and 2x - 3y=4 now solve the both eqn you will get the value "y" is 6:5 and "x" is 19:5....
  • 1 answers

Sia ? 6 years, 6 months ago

According to the question,we have,
 a=9. Therefore, common difference d =17-9=8
let the required number of terms be n.
Therefore, Sn=636
{tex}\Rightarrow{/tex}{tex}\frac{n}{2}{/tex}[2a+(n-1)d]=636
{tex}\Rightarrow{/tex}{tex}\frac{n}{2}{/tex}[2(9)+(n-1)8]=636
{tex}\Rightarrow{/tex}n[18+8n-8]=1272
{tex}\Rightarrow{/tex}8n2+10n-1272=0
{tex}\Rightarrow{/tex}4n2+5n-636=0
{tex}\Rightarrow{/tex}4n2+53n-48n-636=0
{tex}\Rightarrow{/tex}n(4n+53)-12(4n+53)=0
{tex}\Rightarrow{/tex}(4n+53)(n-12)=0
{tex}\Rightarrow{/tex}4n+53=0 or n-12=0
{tex}\Rightarrow{/tex}n={tex}\frac{{ - 53}}{4}{/tex} or  n=12
Since number of terms cannot neither be negative nor fraction, n=12
hence, the required number of terms is 12.

  • 4 answers

Kanika Yadav 7 years, 4 months ago

HCF is 45

Mohit Rajput 7 years, 4 months ago

Its ans is 45

Ayush Behra 7 years, 4 months ago

It is 45

Ayush Behra 7 years, 4 months ago

3
  • 1 answers

Shruti Gupta 7 years, 4 months ago

I think 1to 9 chapters.
  • 1 answers

Sia ? 6 years, 6 months ago


Let speed of passenger train be x km/h
{tex}\therefore {/tex} speed of superfast train = (x + 16) km/h
By question, {tex}T _ { \text { passenger } } = \frac { 192 } { x }{/tex} and {tex}\mathrm { T } _ { \text { superfast } } = \frac { 192 } { ( x + 16 ) }{/tex} 
or, {tex}\frac { 192 } { x } - \frac { 192 } { x + 16 } = 2{/tex} 
or,  {tex}192 ( x + 16 ) - 192 x = 2 \left( x ^ { 2 } + 16 x \right){/tex} 
or, {tex}192 x + 192 \times 16 - 192 x = 2 \left( x ^ { 2 } + 16 x \right){/tex} 
192x + 3072 - 192x {tex}{/tex}{tex} = 2 \left( x ^ { 2 } + 16 x \right){/tex}( divide throughout by 2, we get,
96x + 1536 - 96x {tex} = \left( x ^ { 2 } + 16 x \right){/tex} 
or x(x + 48) - 32(x + 48) = 0
or, (x - 32) (x + 48) = 0
or, x = 32 or - 48
Since speed can't be negative, therefore - 48 is not possible.
{tex}\therefore {/tex} Speed of passenger train = 32 km/h and Speed of fast train = 48 km/h

  • 1 answers

Sia ? 6 years, 6 months ago

We have {tex}\frac{{16}}{x} - 1 = \frac{{15}}{{x + 1}}{/tex}
{tex} \Rightarrow \frac { 16 - x } { x } = \frac { 15 } { x + 1 }{/tex}

Cross multiply,
{tex}\Rightarrow{/tex} {tex}(16-x)(x+1)=15x{/tex}
{tex} \Rightarrow{/tex} {tex}16x+16-x^2-x=15x{/tex}
{tex} \Rightarrow{/tex} 15x - 16x - 16 + x2 + x = 0
{tex} \Rightarrow{/tex} x2 - 16 = 0
{tex} \Rightarrow{/tex} x2 = 16
{tex} \therefore{/tex} x = {tex} \pm{/tex}4

  • 2 answers

Manit 3589 7 years, 4 months ago

My ligin' ma balls!

Anshumaan Sharma 7 years, 4 months ago

Solving all question freely and shared your doubt to all of them and do numericals by s.chand and r.s aggrawal
  • 1 answers

Sia ? 6 years, 6 months ago

Since the point (3, a) lies on the line 2x - 3y = 5, we have
{tex}\times{/tex} 3 - 3 {tex}\times{/tex} a = 5
{tex}\Rightarrow{/tex} 6 - 3a = 5
{tex}\Rightarrow{/tex} 3a = 1
{tex}\Rightarrow{/tex} {tex}a = \frac { 1 } { 3 }{/tex}

  • 1 answers

Sia ? 6 years, 6 months ago

Let the volume of the cylinder be 16 litres(a1).
Air removed by pump ={tex}{1 \over 4} \times 16 = 4litres{/tex}
Air present after first removal = 16-4=12 litres(a2)
Air again removed  ={tex}{1 \over 4} \times 12 = 3litres{/tex}
Air present after second removal =12-3 =9 litres(a3)
The amount of air present in the cyinder is the series
16,12,9.....
a2-a1= 12-16  = -4
a3-a2=9-12= -3
Since the difference is not same .This is not A.P.

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App