No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 3 answers

Rashmi Bajpayee 8 years, 3 months ago

2a4

Patel Heli K 8 years, 3 months ago

8a

Aman Kumar 8 years, 3 months ago

4a+4a=8a
  • 2 answers

Patel Heli K 8 years, 3 months ago

The answer is 45

Adnan Guard 8 years, 3 months ago

A=2÷90 =45
  • 0 answers
  • 0 answers
  • 1 answers

Rashmi Bajpayee 8 years, 3 months ago

Given: {tex}p\left( x \right) = \sqrt 2 {x^2} + kx + 3{/tex}

If (x - 2) is a factor of p(x), then

p(2) = 0

=>     {tex}\sqrt 2 {\left( 2 \right)^2} + k\left( 2 \right) + 3 = 0{/tex}

=>     {tex}4\sqrt 2 + 2k + 3 = 0{/tex}

=>     {tex}2k = - 4\sqrt 2 - 3{/tex}

=>     {tex}k = {{ - \left( {4\sqrt 2 + 3} \right)} \over 2}{/tex}

 

  • 0 answers
  • 0 answers
  • 1 answers

Rashmi Bajpayee 8 years, 3 months ago

x = {tex}3\sqrt 2 + \sqrt 3 {/tex}

Then, {tex}{1 \over x} = {1 \over {3\sqrt 2 + \sqrt 3 }} \times {{3\sqrt 2 - \sqrt 3 } \over {3\sqrt 2 - \sqrt 3 }} = {{3\sqrt 2 - \sqrt 3 } \over {15}}{/tex}

And {tex}x + {1 \over x} = 3\sqrt 2 + \sqrt 3 + {{3\sqrt 2 - \sqrt 3 } \over {15}}{/tex} = {tex}{{45\sqrt 2 + 15\sqrt 3 + 3\sqrt 2 - \sqrt 3 } \over {15}}{/tex} = {tex}{{48\sqrt 2 + 14\sqrt 3 } \over {15}}{/tex}

Now, {tex}{x^3} + {1 \over {{x^3}}} = \left( {x + {1 \over x}} \right)\left( {{x^2} + {1 \over {{x^2}}} - x \times {1 \over x}} \right){/tex}

{tex}\left( {x + {1 \over x}} \right)\left[ {{{\left( {x + {1 \over x}} \right)}^2} - 2 \times x \times {1 \over x} - 1} \right]{/tex}

{tex}\left( {x + {1 \over x}} \right)\left[ {{{\left( {x + {1 \over x}} \right)}^2} - 3} \right]{/tex}

{tex}\left( {{{48\sqrt 2 + 14\sqrt 3 } \over {15}}} \right)\left[ {{{\left( {{{48\sqrt 2 + 14\sqrt 3 } \over {15}}} \right)}^2} - 3} \right]{/tex}

{tex}\left( {{{48\sqrt 2 + 14\sqrt 3 } \over {15}}} \right)\left[ {{{4608 + 588 + 1344\sqrt 6 } \over {225}} - 3} \right]{/tex}

{tex}\left( {{{48\sqrt 2 + 14\sqrt 3 } \over {15}}} \right)\left[ {{{5196 + 1344\sqrt 6 - 675} \over {225}}} \right]{/tex}

{tex}\left( {{{48\sqrt 2 + 14\sqrt 3 } \over {15}}} \right)\left( {{{4521 + 1344\sqrt 6 } \over {225}}} \right){/tex}

{tex}\left( {{{48\sqrt 2 + 14\sqrt 3 } \over {15}}} \right)\left( {{{1507 + 448\sqrt 6 } \over {75}}} \right){/tex}

{tex}{{72336\sqrt 2 + 21504\sqrt {12} + 21098\sqrt 3 + 6272\sqrt {18} } \over {1125}}{/tex}

{tex}{{72336\sqrt 2 + 43008\sqrt 3 + 21098\sqrt 3 + 18816\sqrt 2 } \over {1125}}{/tex}

{tex}{{91152\sqrt 2 + 64106\sqrt 3 } \over {1125}}{/tex}

 

  • 2 answers

Arpit Mishra 8 years, 3 months ago

Angle +compliment angle=90' X+4x=90' 5x=90' X=90/5 X=18' Compliment=4×18' =72'

Rubham Singh 8 years, 3 months ago

30&60
  • 2 answers

Hi M Anshu Pathak 8 years, 3 months ago

a figure which is formed by three line segments is called triangle

Soumya Ghoshal 8 years, 3 months ago

In which figure have three side and addition of three angles is 180°,this is called triangle.

  • 0 answers
  • 1 answers

Sridarsan Sah 8 years, 3 months ago

The numbers which can be written in ( p/q ) form are called as rational numbers. Example -7/3 ,5,0,1,-1
  • 0 answers
  • 1 answers

Sridarsan Sah 8 years, 3 months ago

To find irrational numbers we can write our phone number after the decimal i.e, 2.125437957....and 2.24765327890......
  • 1 answers

Soumya Ghoshal 8 years, 3 months ago

Let the side x cm.

Semi-Perimeter ={tex}\frac{{(x+x+x)}}{2}=\frac{{3x}}{2}{/tex}cm

Now , area of the equilateral triangle is

{tex}\sqrt{{(3x/2)(x/2)(x/2)(x/2)}}{/tex}

={tex}\frac{{√3x^2}}{4}{/tex}cm²

  • 1 answers

Hans Raj 8 years, 3 months ago

    52773636

= 5x10000000 + 2x1000000 + 7x100000 x 7x10000 x 3000 + 6x100 + 3x10 + 6

  • 1 answers

Ahinav Pandey 8 years, 3 months ago

36x
  • 2 answers

Hans Raj 8 years, 3 months ago

(a + b )2 = a2 + 2ab + b2

Abhishek Keshri 8 years, 3 months ago

A²+b²+2ab
  • 1 answers

Hans Raj 8 years, 3 months ago

The angle of union is formed by two rays

  • 2 answers

Hans Raj 8 years, 3 months ago

    25 - (1 x 1/3) x 3 x 16

= 25 - (1/3 x 3 x 16)

 = 25 - 16

= 9

 

Dhruva Parashar 8 years, 3 months ago

9
  • 1 answers

Dharmendra Kumar 8 years, 3 months ago

8x3+27y3=23x3+33y3=(2x)3+(3y)3       [by using anbn=(ab)n]

Now by using identity 

(a+b)3=a3+b3+3ab(a+b)

a3+b3=(a+b)3 - 3ab(a+b)       ---------(1)

Now 8x3+27y3=(2x)3+(3y)3

                          = (2x+3y)3-3(2x)(3y)(2x+3y)      [by using equation (1) put a=2x  and b=3y]

                          =  (2x+3y)3 - 18xy(2x+3y)

                          = (12)3  - 18×6×12                     [given 2x+3y =12   and    xy= 6]

                          =1728 -1296

                          = 432

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App