No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 0 answers
  • 0 answers
  • 1 answers

Suhan Salmani 1 year, 10 months ago

(a3)×(2a22)×(4a26)
  • 3 answers

Turupu Mahender 1 year, 10 months ago

81

__ Shashwat__ 1 year, 10 months ago

180-99=81

Mr.Harsh Chavda 1 year, 10 months ago

First 77+22= 99 Total sum of triangle is 180 180-99 =81
  • 1 answers

Shamitha Shami 1 year, 10 months ago

Let ABCD be a square When diagonals are constructed we get two triangle that is ∆ ADC and ∆ BCD We have to prove that these triangles are congruent (same) to justify that diagonals are equal. In ∆ADC and ∆ BCD AD =BC (sides) DC =DC (common) Angle ADC = angle BCD (90) So ∆ADC is congruent to ∆BCD AC =BD (CPCT :- coresponding part of congruent triangle ) AC and BD are diagonals of square ABCD In same square let us take the ∆AOD and ∆BOC Note:- here O is the intersection point of diagonals of square In ∆AOD and ∆BOC AD = BC Angle ADO = Angle OBC Angle DAO =Angle OCB (Alternative interior angle) ∆AOD and ∆BOC are congruent AO = OC (CPCT) DO = OB (CPCT) Hence diagonals bisect each other Same way when we prove ∆AOD is congruent to ∆DOC using SSS congruence rule we will get Angle AOD = Angle DOC (CPCT)---------- note 1 let angle AOD = angle 1 let angle DOC = angle 2 When we add angle 1 and 2 we will get 180° Angle 1 + Angle 2 = 180° From note 1 Angle 1= angle 2 So, angle 1+ angle 1 = 180° 2(angle 1) = 180° Angle 1 = 90° Angle 1, angle 2 = 90° Hence diagonals of a square are equal and bisect each other at right angle Hope you got it!!! ☺️☺️
  • 0 answers
  • 3 answers

Shamitha Shami 1 year, 10 months ago

Actually 5 is a rational number because it can be represented in the form of p/q Ex:- 5/1

Rashi Kaushik 1 year, 10 months ago

Sample paper solve set2

Mohit Yadav 1 year, 10 months ago

5 is not a irrational number
  • 3 answers

Shamitha Shami 1 year, 10 months ago

* Hey 5/3 is rational number

Shamitha Shami 1 year, 10 months ago

If we can represent a number in the form of p/q then it is a rational number if cannot then it is a irrational number Ex:- 5/3 is irrational √2 is irrational

Ujjwal Pandit 1 year, 10 months ago

We let any no. In p/q form and squaring both side then q divide q2 then they divide q also
  • 3 answers

Dena Joshi 1 year, 10 months ago

-6

Shamitha Shami 1 year, 10 months ago

Here substitute -1 in place of x in the equation 5x-4x^2+3 = 5(-1) -4(-1)^2 + 3 = -5 -4(1) + 3 = -5-4+3 = -9+3 =-6 hope you got it!!! ☺️☺️☺️

Vedshree Patil 1 year, 10 months ago

It 2
  • 2 answers

Sushamita Singh 1 year, 10 months ago

2(lb+bh+hl) , l = length h = height b = breadth

Harshit Agarwal 1 year, 10 months ago

2(lb+bh+hl)
  • 1 answers

Viswajeet Reddy Bheemireddy 1 year, 10 months ago

We know that factors of 3 are 1,3 Hence, 4t=1t+3t So, t²+4t+3 t²+1t+3t+3 t(t+1)+3(t+1) ((taking t and 3 common)) (t+3)(t+1) Hence this is your answer.
  • 1 answers

Preeti Dabral 1 year, 11 months ago

Let AB and CD be two parallel chords of a circle with centre O such that AB = 6 cm and CD = 12 cm. Let the radius of the circle be r cm. Draw OP {tex}\perp{/tex} AB and OQ {tex}\perp{/tex} CD. Since AB || CD and OP {tex}\perp{/tex} AB, OQ {tex}\perp{/tex} CD. Therefore, points O, Q, and P are collinear.

Clearly, PQ = 3 cm
Let OQ = x cm. Then, OP = (x + 3) cm
Applying Pythagoras theorem in right triangles OAP and OCQ, we obtain
OA2 = OP2 + AP2 and OC2 = OQ2 + CQ2 
{tex}\Rightarrow{/tex} r2 = (x + 3)2 + 32 and r2 = x2 + 62 [{tex}\because{/tex} AP = {tex}\frac{1}{2}{/tex} AB = 3 cm and CQ = {tex}\frac{1}{2}{/tex}CD = 6 cm]
{tex}\Rightarrow{/tex} (x + 3)2 + 32 = x2 + 62 [On equating the values of r2]
{tex}\Rightarrow{/tex}x2 + 6x + 9 + 9 = x2 + 36 {tex}\Rightarrow{/tex} 6x = 18 {tex}\Rightarrow{/tex} x = 3
Putting the value of x in r2 = x2 + 62, we get
r2 = 32 + 62 = 45 {tex}\Rightarrow{/tex} r = {tex}\sqrt{45}{/tex} cm = 6.7 cm
Hence, the radius of the circle is 6.7 cm.

  • 1 answers

Preeti Dabral 1 year, 11 months ago

Here,  ∠PQR=100

Take a point S in the major arc. Join PS and RS.

{tex}\because{/tex} PQRS is a cyclic quadrilateral.
{tex}\therefore \angle \mathrm { PQR } + \angle \mathrm { PSQ } = 180 ^ { \circ }{/tex}
|The sum of either pair of opposite angles of a cyclic quadrilateral is 180o
{tex}\Rightarrow 100 ^ { \circ } + \angle P S R = 180 ^ { \circ }{/tex}
{tex}\Rightarrow \angle P S R = 180 ^ { \circ } - 100 ^ { \circ }{/tex}
{tex}\Rightarrow \angle P S R = 80 ^ { \circ }{/tex} ......... (1)
Now, {tex}\angle \mathrm { POR } = 2 \angle \mathrm { PSR }{/tex}
|The angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle
{tex}= 2 \times 80 ^ { \circ } = 160 ^ { \circ }{/tex} ........ (2) |Using (1)
In {tex}\triangle O P R{/tex}
{tex}\because O P = O R{/tex} |Radii of a circle
{tex}\therefore \angle \mathrm { OPR } = \angle \mathrm { ORP }{/tex} ....... (3)
|Angles opposite to equal sides of a triangle are equal
In {tex}\triangle O P R{/tex}
{tex}\angle O P R + \angle O R P + \angle P O R = 180 ^ { \circ }{/tex} | Sum of all the angles of a triangle is 180o
{tex}\Rightarrow \angle \mathrm { OPR } + \angle \mathrm { OPR } + 160 ^ { \circ } = 180 ^ { \circ }{/tex} |Using (2) and (1)
{tex}\Rightarrow 2 \angle O P R + 160 ^ { \circ } = 180 ^ { \circ }{/tex}
{tex}\Rightarrow 2 \angle O P R = 180 ^ { \circ } - 160 ^ { \circ } = 20 ^ { \circ }{/tex}
{tex}\Rightarrow \angle \mathrm { OPR } = 10 ^ { \circ }{/tex}

  • 3 answers

Anshika Bansal 1 year, 11 months ago

Yes

Kiran Pawar 1 year, 11 months ago

Is 12.2 exercise cancelled from syllabus?

Samadhan Biswas 1 year, 11 months ago

Nahi hai
  • 0 answers
  • 1 answers

Preeti Dabral 1 year, 11 months ago

Therefore, 3√4 is greater.

  • 1 answers

Preeti Dabral 1 year, 11 months ago

Inner diameter of bowl = 10.5 cm
{tex}\therefore {/tex} Inner radius of bowl {tex}\left( r \right)=\frac{10.5}{2}{/tex} = 5.25 cm
Now, Inner surface area of bowl = {tex}2\pi {{r}^{2}}{/tex}
{tex}=2\times \frac{22}{7}\times 5.25\times 5.25{/tex}
{tex}=2\times \frac{22}{7}\times \frac{21}{4}\times \frac{21}{4}{/tex}
={tex}\frac{693}{4}c{{m}^{2}}{/tex}
{tex}\because {/tex} Cost of tin-plating per{tex} 100\text{ }c{{m}^{2}}{/tex} = ₹ 16
{tex}\therefore {/tex} Cost of tin-plating per{tex} 1\text{ }c{{m}^{2}}=\frac{16}{100}{/tex}
{tex}\therefore {/tex} Cost of tin-plating per {tex}\frac{693}{4}c{{m}^{2}}=\frac{16}{100}\times \frac{693}{4}{/tex} = ₹27.72

  • 4 answers

Sushamita Singh 1 year, 10 months ago

Y -axis

Sushamita Singh 1 year, 10 months ago

X-axis

Jiganshu Kansal 1 year, 10 months ago

Axis

Tanisha Singh 1 year, 11 months ago

Axis
  • 0 answers
  • 4 answers

Anvi 8A Arnav Singh11 1 year, 11 months ago

Volume of sphere=4/3πr^3 =4/3*22/7*2.8*2.8*2.8 =4/3*22*0.4*2.8*2.8 =88/3*0.4*2.8*2.8 =35.5/3*2.8*2.8 =278.32/3 = 92.77

Saurabh Yadav 1 year, 11 months ago

91980 litre

Shaurya Kulshrestha 1 year, 11 months ago

Please help

Shaurya Kulshrestha 1 year, 11 months ago

Hi

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App