No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Preeti Dabral 3 years, 1 month ago

Therefore, 3√4 is greater.

  • 1 answers

Preeti Dabral 3 years, 1 month ago

Inner diameter of bowl = 10.5 cm
{tex}\therefore {/tex} Inner radius of bowl {tex}\left( r \right)=\frac{10.5}{2}{/tex} = 5.25 cm
Now, Inner surface area of bowl = {tex}2\pi {{r}^{2}}{/tex}
{tex}=2\times \frac{22}{7}\times 5.25\times 5.25{/tex}
{tex}=2\times \frac{22}{7}\times \frac{21}{4}\times \frac{21}{4}{/tex}
={tex}\frac{693}{4}c{{m}^{2}}{/tex}
{tex}\because {/tex} Cost of tin-plating per{tex} 100\text{ }c{{m}^{2}}{/tex} = ₹ 16
{tex}\therefore {/tex} Cost of tin-plating per{tex} 1\text{ }c{{m}^{2}}=\frac{16}{100}{/tex}
{tex}\therefore {/tex} Cost of tin-plating per {tex}\frac{693}{4}c{{m}^{2}}=\frac{16}{100}\times \frac{693}{4}{/tex} = ₹27.72

  • 4 answers

Sushamita Singh 3 years, 1 month ago

Y -axis

Sushamita Singh 3 years, 1 month ago

X-axis

Jiganshu Kansal 3 years, 1 month ago

Axis

Tanisha Singh 3 years, 1 month ago

Axis
  • 0 answers
  • 4 answers

Anvi 8A Arnav Singh11 3 years, 1 month ago

Volume of sphere=4/3πr^3 =4/3*22/7*2.8*2.8*2.8 =4/3*22*0.4*2.8*2.8 =88/3*0.4*2.8*2.8 =35.5/3*2.8*2.8 =278.32/3 = 92.77

Saurabh Yadav 3 years, 1 month ago

91980 litre

Shaurya Kulshrestha 3 years, 1 month ago

Please help

Shaurya Kulshrestha 3 years, 1 month ago

Hi
  • 4 answers

Pavan Pavan 3 years, 1 month ago

Thanks

Jatin Pratap Singh 3 years, 1 month ago

Root 2

Shivam Gupta 3 years, 1 month ago

√2

Ayush Gupta 3 years, 1 month ago

Root 2
  • 1 answers

Saurabh Yadav 3 years, 1 month ago

1.38
  • 1 answers

Preeti Dabral 3 years, 1 month ago

{tex}\begin{aligned} & \Longrightarrow \frac{2 \sqrt{6}}{\sqrt{2}+\sqrt{3}} \times \frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}-\sqrt{3}}+\frac{6 \sqrt{2}}{\sqrt{6}+\sqrt{3}} \times \frac{\sqrt{6}-\sqrt{3}}{\sqrt{6}-\sqrt{3}}-\frac{8 \sqrt{3}}{\sqrt{6}+\sqrt{2}} \times \frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}-\sqrt{2}} \\ & \Longrightarrow \frac{4 \sqrt{3}-6 \sqrt{2}}{2-3}+\frac{12 \sqrt{3}-6 \sqrt{6}}{6-3}-\frac{24 \sqrt{2}-8 \sqrt{6}}{6-2} \\ & \Longrightarrow-4 \sqrt{3}+6 \sqrt{2}+\frac{12 \sqrt{3}-6 \sqrt{6}}{3}-\frac{24 \sqrt{2}-8 \sqrt{6}}{4} \\ & \Longrightarrow-4 \sqrt{3}+6 \sqrt{2}+4 \sqrt{3}-2 \sqrt{6}-6 \sqrt{2}+2 \sqrt{6} \\ & \Longrightarrow-4 \sqrt{3}+6 \sqrt{2}+4 \sqrt{3}-2 \sqrt{6}-6 \sqrt{2}+2 \sqrt{6} \\ & \Longrightarrow 0 \end{aligned}{/tex}

  • 0 answers
  • 1 answers

Aryan Chauhan 3 years, 1 month ago

Wojciech is duo is duo unlike to ke stop Robert Unicoi d do controversial
  • 1 answers

Preeti Dabral 3 years, 1 month ago

3.17157287525

  • 2 answers

Preeti Dabral 3 years, 1 month ago

SAS congruence criterion: If two sides and included an angle of one triangle are equal to the corresponding two sides and included angle of another triangle then the two triangles are said to be congruent.

Consider {tex}\triangle{/tex}ABC, {tex}\triangle{/tex}PQR
here AB = PQ, AC = PR and {tex}\angle{/tex}A = {tex}\angle{/tex}P
Hence {tex}\triangle{/tex}ABC {tex}\cong{/tex} {tex}\triangle{/tex}PQR by SAS congruence criterion.

Manju Rani 3 years, 1 month ago

But how we know
  • 1 answers

Suju Apee 3 years, 2 months ago

8.33..
  • 2 answers

Suju Apee 3 years, 2 months ago

80 and 60 degree

Sumedh Wani 3 years, 2 months ago

Base angle 80° and tip angle 60°
  • 1 answers

Preeti Dabral 3 years, 1 month ago

For class room : l = 7m, b = 6.5 m, h = 4 m
∴ Area of walls of the room = 2(l + b)h = 2(7 + 6.5)4 = 108 m2
Area of door = 3 × 1.4 = 4.2 m2
Area of one window = 2 × 1 = 2 m2
∴ Area of 3 windows = 3 × 2 = 6 m2
∴ Area of the walls of the room to be colour washed = 108 – (4.2 + 6)
= 108 – 10.2 = 97.8 m2
∴ Cost of colour washing the classroom at Rs. 15 per square metre = Rs 97.8 × 15 = Rs. 1467.

  • 1 answers

Preeti Dabral 3 years, 1 month ago

Constructing triangle ABC in which AB = 5.8 cm , BC + CA = 8.4 cm and ∠B = 45°.

Step 1: Draw a line segment AB 5.8 cm.

Step 2 : Draw ∠B = 45°.

Step 3 : With Center B and radius 8.4 cm, make an arc which intersects BX at D. 

Step 4 : Join D to A. 

Step 5 : Draw a perpendicular bisector of segment DA it intersect the line segment BD at point C. 

Step 6 : Join C to A. 

ABC is the required triangle. 

  • 2 answers

Raunak Yadav 3 years, 1 month ago

Hi archita

Vijay Reddy 3 years, 2 months ago

Exercise 15.1 6,7,8,11,12,13
  • 0 answers
  • 1 answers

Preeti Dabral 3 years, 1 month ago

Since we know that rational number between two rational numbers is obtained by {tex}\frac{1}{2}{/tex}[a+b]
A rational number lying between -2 and -3 is {tex}\frac{1}{2}{/tex}[(-2) + (-3)],
i.e.,{tex}-\frac{5}{2}{/tex}
Now, a rational number lying between -2 and{tex}-\frac{5}{2}{/tex}is
{tex}\left.\frac{1}{2}[(-2)+\left(-\frac{5}{2}\right)\right ]{/tex}
{tex} \frac{1}{2} \times\left(-\frac{9}{2}\right) {/tex}
{tex}-\frac{9}{4} {/tex}
And, a rational number lying between {tex}-\frac{5}{2}{/tex} and -3 is
{tex}\frac{1}{2}\left(\left(-\frac{5}{2}\right)+(-3)\right) {/tex}
{tex}\frac{1}{2} \times\left(-\frac{11}{2}\right){/tex}
{tex}-\frac{11}{4} {/tex}
Thus, we have {tex}-2>-\frac{9}{4}>-\frac{5}{2}>-\frac{11}{4}>3{/tex}
Hence, three rational numbers between -2 and -3 are {tex}-\frac{9}{4},-\frac{5}{2}{/tex} and {tex}-\frac{11}{4}{/tex}

  • 1 answers

Kunal Barhate 3 years, 2 months ago

(-2-√3) (-2+√3) (-2) ^2 - (√3) ^2 4-3 1
  • 1 answers

Preeti Dabral 3 years, 1 month ago

From the figure, we observe that when different pairs of circles are drawn, each pair have two points (say A and B) in common.
Maximum number of common points are two in number.

Suppose two circles C (O) and C (O’) intersect each other in three points, say A, B and C.
Then A, B and C are non-collinear points.
We know that:
There is one and only one circle passing through three non-collinear points.
Therefore, a unique circle passes through A, B and C.
{tex} \Rightarrow {/tex} O’ coincides with O and s = r where s and r are the radii of two circles C(O) and C(O')
A contradiction to the fact that C (O’,) {tex} \ne {/tex} C (O,)
{tex}\therefore {/tex} Our supposition is wrong.
Hence two different circles cannot intersect each other at more than two points.

  • 2 answers

Vansh Katiyar 3 years, 2 months ago

Abccica

Rohit Meena 3 years, 2 months ago

Abscessena
  • 1 answers

Preeti Dabral 3 years, 1 month ago

  1. Surface area of the sphere ={tex}4\pi r^2{/tex}
  2. For cylinder
    Radius of the base = r
    Height = 2r
    {tex}\therefore{/tex} Curved surface area of the cylinder = {tex}2\pi rh=2\pi (r)(2r)=4\pi r^2{/tex}
  3. Ratio of the areas obtained in (i) and (ii)
    {tex}={{surface\ area\ of\ the\ sphere}\over{curved\ surface\ area\ of\ the\ cylinder}}{/tex} 
    {tex}={{4\pi r^2}\over{4\pi r^2}}={1\over1}=1:1{/tex}

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App