No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Preeti Dabral 2 years, 11 months ago

Therefore, 3√4 is greater.

  • 1 answers

Preeti Dabral 2 years, 11 months ago

Inner diameter of bowl = 10.5 cm
{tex}\therefore {/tex} Inner radius of bowl {tex}\left( r \right)=\frac{10.5}{2}{/tex} = 5.25 cm
Now, Inner surface area of bowl = {tex}2\pi {{r}^{2}}{/tex}
{tex}=2\times \frac{22}{7}\times 5.25\times 5.25{/tex}
{tex}=2\times \frac{22}{7}\times \frac{21}{4}\times \frac{21}{4}{/tex}
={tex}\frac{693}{4}c{{m}^{2}}{/tex}
{tex}\because {/tex} Cost of tin-plating per{tex} 100\text{ }c{{m}^{2}}{/tex} = ₹ 16
{tex}\therefore {/tex} Cost of tin-plating per{tex} 1\text{ }c{{m}^{2}}=\frac{16}{100}{/tex}
{tex}\therefore {/tex} Cost of tin-plating per {tex}\frac{693}{4}c{{m}^{2}}=\frac{16}{100}\times \frac{693}{4}{/tex} = ₹27.72

  • 4 answers

Sushamita Singh 2 years, 11 months ago

Y -axis

Sushamita Singh 2 years, 11 months ago

X-axis

Jiganshu Kansal 2 years, 11 months ago

Axis

Tanisha Singh 2 years, 11 months ago

Axis
  • 0 answers
  • 4 answers

Anvi 8A Arnav Singh11 2 years, 11 months ago

Volume of sphere=4/3πr^3 =4/3*22/7*2.8*2.8*2.8 =4/3*22*0.4*2.8*2.8 =88/3*0.4*2.8*2.8 =35.5/3*2.8*2.8 =278.32/3 = 92.77

Saurabh Yadav 3 years ago

91980 litre
Please help
Hi
  • 4 answers

Pavan Pavan 2 years, 11 months ago

Thanks

Jatin Pratap Singh 2 years, 11 months ago

Root 2

Shivam Gupta 2 years, 11 months ago

√2

Ayush Gupta 3 years ago

Root 2
  • 1 answers

Preeti Dabral 3 years ago

{tex}\begin{aligned} & \Longrightarrow \frac{2 \sqrt{6}}{\sqrt{2}+\sqrt{3}} \times \frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}-\sqrt{3}}+\frac{6 \sqrt{2}}{\sqrt{6}+\sqrt{3}} \times \frac{\sqrt{6}-\sqrt{3}}{\sqrt{6}-\sqrt{3}}-\frac{8 \sqrt{3}}{\sqrt{6}+\sqrt{2}} \times \frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}-\sqrt{2}} \\ & \Longrightarrow \frac{4 \sqrt{3}-6 \sqrt{2}}{2-3}+\frac{12 \sqrt{3}-6 \sqrt{6}}{6-3}-\frac{24 \sqrt{2}-8 \sqrt{6}}{6-2} \\ & \Longrightarrow-4 \sqrt{3}+6 \sqrt{2}+\frac{12 \sqrt{3}-6 \sqrt{6}}{3}-\frac{24 \sqrt{2}-8 \sqrt{6}}{4} \\ & \Longrightarrow-4 \sqrt{3}+6 \sqrt{2}+4 \sqrt{3}-2 \sqrt{6}-6 \sqrt{2}+2 \sqrt{6} \\ & \Longrightarrow-4 \sqrt{3}+6 \sqrt{2}+4 \sqrt{3}-2 \sqrt{6}-6 \sqrt{2}+2 \sqrt{6} \\ & \Longrightarrow 0 \end{aligned}{/tex}

  • 0 answers
  • 1 answers

Aryan Chauhan 3 years ago

Wojciech is duo is duo unlike to ke stop Robert Unicoi d do controversial
  • 1 answers

Preeti Dabral 3 years ago

3.17157287525

  • 2 answers

Preeti Dabral 3 years ago

SAS congruence criterion: If two sides and included an angle of one triangle are equal to the corresponding two sides and included angle of another triangle then the two triangles are said to be congruent.

Consider {tex}\triangle{/tex}ABC, {tex}\triangle{/tex}PQR
here AB = PQ, AC = PR and {tex}\angle{/tex}A = {tex}\angle{/tex}P
Hence {tex}\triangle{/tex}ABC {tex}\cong{/tex} {tex}\triangle{/tex}PQR by SAS congruence criterion.

Manju Rani 3 years ago

But how we know
  • 1 answers

Suju Apee 3 years ago

8.33..
  • 1 answers

Preeti Dabral 3 years ago

For class room : l = 7m, b = 6.5 m, h = 4 m
∴ Area of walls of the room = 2(l + b)h = 2(7 + 6.5)4 = 108 m2
Area of door = 3 × 1.4 = 4.2 m2
Area of one window = 2 × 1 = 2 m2
∴ Area of 3 windows = 3 × 2 = 6 m2
∴ Area of the walls of the room to be colour washed = 108 – (4.2 + 6)
= 108 – 10.2 = 97.8 m2
∴ Cost of colour washing the classroom at Rs. 15 per square metre = Rs 97.8 × 15 = Rs. 1467.

  • 1 answers

Preeti Dabral 3 years ago

Constructing triangle ABC in which AB = 5.8 cm , BC + CA = 8.4 cm and ∠B = 45°.

Step 1: Draw a line segment AB 5.8 cm.

Step 2 : Draw ∠B = 45°.

Step 3 : With Center B and radius 8.4 cm, make an arc which intersects BX at D. 

Step 4 : Join D to A. 

Step 5 : Draw a perpendicular bisector of segment DA it intersect the line segment BD at point C. 

Step 6 : Join C to A. 

ABC is the required triangle. 

  • 2 answers

Raunak Yadav 2 years, 11 months ago

Hi archita

Vijay Reddy 3 years ago

Exercise 15.1 6,7,8,11,12,13
  • 0 answers
  • 1 answers

Preeti Dabral 3 years ago

Since we know that rational number between two rational numbers is obtained by {tex}\frac{1}{2}{/tex}[a+b]
A rational number lying between -2 and -3 is {tex}\frac{1}{2}{/tex}[(-2) + (-3)],
i.e.,{tex}-\frac{5}{2}{/tex}
Now, a rational number lying between -2 and{tex}-\frac{5}{2}{/tex}is
{tex}\left.\frac{1}{2}[(-2)+\left(-\frac{5}{2}\right)\right ]{/tex}
{tex} \frac{1}{2} \times\left(-\frac{9}{2}\right) {/tex}
{tex}-\frac{9}{4} {/tex}
And, a rational number lying between {tex}-\frac{5}{2}{/tex} and -3 is
{tex}\frac{1}{2}\left(\left(-\frac{5}{2}\right)+(-3)\right) {/tex}
{tex}\frac{1}{2} \times\left(-\frac{11}{2}\right){/tex}
{tex}-\frac{11}{4} {/tex}
Thus, we have {tex}-2>-\frac{9}{4}>-\frac{5}{2}>-\frac{11}{4}>3{/tex}
Hence, three rational numbers between -2 and -3 are {tex}-\frac{9}{4},-\frac{5}{2}{/tex} and {tex}-\frac{11}{4}{/tex}

  • 1 answers

Kunal Barhate 3 years ago

(-2-√3) (-2+√3) (-2) ^2 - (√3) ^2 4-3 1
  • 1 answers

Preeti Dabral 3 years ago

From the figure, we observe that when different pairs of circles are drawn, each pair have two points (say A and B) in common.
Maximum number of common points are two in number.

Suppose two circles C (O) and C (O’) intersect each other in three points, say A, B and C.
Then A, B and C are non-collinear points.
We know that:
There is one and only one circle passing through three non-collinear points.
Therefore, a unique circle passes through A, B and C.
{tex} \Rightarrow {/tex} O’ coincides with O and s = r where s and r are the radii of two circles C(O) and C(O')
A contradiction to the fact that C (O’,) {tex} \ne {/tex} C (O,)
{tex}\therefore {/tex} Our supposition is wrong.
Hence two different circles cannot intersect each other at more than two points.

  • 2 answers

Vansh Katiyar 3 years ago

Abccica

Rohit Meena 3 years ago

Abscessena
  • 1 answers

Preeti Dabral 3 years ago

  1. Surface area of the sphere ={tex}4\pi r^2{/tex}
  2. For cylinder
    Radius of the base = r
    Height = 2r
    {tex}\therefore{/tex} Curved surface area of the cylinder = {tex}2\pi rh=2\pi (r)(2r)=4\pi r^2{/tex}
  3. Ratio of the areas obtained in (i) and (ii)
    {tex}={{surface\ area\ of\ the\ sphere}\over{curved\ surface\ area\ of\ the\ cylinder}}{/tex} 
    {tex}={{4\pi r^2}\over{4\pi r^2}}={1\over1}=1:1{/tex}

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App