No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Prarthana P 1 year, 10 months ago

1/√7×√7/√7=√7/7
  • 2 answers

Prince Kumar 1 year, 10 months ago

X = 0 , y __0 X = 2 , Y = 2 X =5 ,. Y =. 5

Vaibhav Verma 1 year, 10 months ago

Answer÷ 5x + 2y = 10 Let's take value of x=0 Substitute the value of x 5×0 + 2y = 10 2y = 10 y = 5. & x = 0 Again, x = 2 Substitute the value of x Therefore, 5×2 + 2y = 10 10 + 2y = 10 On further calculations. y = 0. & x = 2 Also, x = 4. Substitute the value of x. 5×4 + 2y = 10 20 + 2y = 10 On further calculations. 2y = -10 y = -5 & x = 4 Thank you🌹
  • 2 answers

Kanika Sharma 1 year, 10 months ago

2011-1964 = 47yrs Leap year comes in every 4th year So 47/4=11yrs +3yrs

Kanika Sharma 1 year, 10 months ago

11
  • 2 answers

Himanshu Tiwari 1 year, 10 months ago

(3x-10)(x-3)

Ayush Gujjar 1 year, 10 months ago

3x² -19x + 30 =0 3x²-10x-9x+30=0 X[3x-10]+3[3x-10]=0 Factor are: 1.(3x-10)=0 X=10/3 2.(x+3)=0 X=-3
  • 1 answers

Preeti Dabral 1 year, 10 months ago

y-Coordinate. A y-coordinate is the second element in an ordered pair. When an ordered pair is graphed as the coordinates of a point in the coordinate plane, the y-coordinate represents the directed distance of the point from the x-axis. Another name for the y-coordinate is the ordinate.

  • 3 answers

Vaibhav Verma 1 year, 10 months ago

-3

Kanika Sharma 1 year, 10 months ago

-3

Ayush Gujjar 1 year, 10 months ago

F
  • 3 answers

Chinmayi P P 1 year, 10 months ago

59+86=146

S.Shahana S.Shahana 1 year, 10 months ago

146

Khushi Tayal 1 year, 10 months ago

146
  • 2 answers

Mostak Hussain 1 year, 10 months ago

90 degree

Shagun Shagun 1 year, 10 months ago

90 degree
  • 1 answers

Preeti Dabral 1 year, 10 months ago


AB = 3 cm, AC = 4 cm
In {tex}\triangle{/tex}BAC, by pythagoras theorem
BC2 = AB2 + AC2 
{tex}\Rightarrow{/tex}BC2 = 32 + 42 
{tex}\Rightarrow{/tex}BC2 = 25 
{tex}\Rightarrow{/tex}BC = {tex}\sqrt {25} {/tex} = 5 cm
In {tex}\triangle{/tex}AOB and {tex}\triangle{/tex}CAB
{tex}\angle{/tex}ABO = {tex}\angle{/tex}ABC [common]
{tex}\angle{/tex}AOB = {tex}\angle{/tex}BAC [each 90o
Then, {tex}\triangle{/tex}AOB - {tex}\triangle{/tex}CAB [by AA similarity]
{tex}\therefore{/tex} {tex}\frac { A O } { C A } = \frac { O B } { A B } = \frac { A B } { C B }{/tex} [c.p.s.t]
{tex}\Rightarrow{/tex} {tex}\frac { A O } { 4 } = \frac { O B } { 3 } = \frac { 3 } { 5 }{/tex}
Then, AO = {tex}\frac{{4 \times 3}}{5}{/tex} and OB = {tex}\frac{{3 \times 3}}{5}{/tex}
{tex}\Rightarrow{/tex} AO = {tex}\frac{12}{5}{/tex} cm and OB = {tex}\frac{9}{5}{/tex} cm
{tex}\therefore{/tex}OC = 5 - {tex}\frac{9}{5}{/tex} = {tex}\frac{16}{5}{/tex}cm
{tex}\therefore{/tex} Volume of double cone thus generated = volume of first cone + volume of second cone
{tex}= \frac { 1 } { 3 } \pi ( A O ) ^ { 2 } \times B O + \frac { 1 } { 3 } \pi ( A O ) ^ { 2 } \times O C{/tex}
{tex}= \frac { 1 } { 3 } \times \frac { 22 } { 7 } \times \left( \frac { 12 } { 5 } \right) ^ { 2 } \times \frac { 9 } { 5 } + \frac { 1 } { 3 } \times \frac { 22 } { 7 } \times \left( \frac { 12 } { 5 } \right) ^ { 2 } \times \frac { 16 } { 5 }{/tex}
{tex}= \frac { 1 } { 3 } \times \frac { 22 } { 7 } \times \frac { 12 } { 5 } \times \frac { 12 } { 5 } \left[ \frac { 9 } { 5 } + \frac { 16 } { 5 } \right]{/tex}
{tex}= \frac { 1 } { 3 } \times \frac { 22 } { 7 } \times \frac { 12 } { 5 } \times \frac { 12 } { 5 } \times 5{/tex}
={tex}\frac{1056}{35}{/tex} = {tex}30 \frac { 6 } { 35 } \mathrm { cm } ^ { 3 }{/tex}.

  • 5 answers

Radhika Waghmare 1 year, 10 months ago

3

Joy Deep 7 A 1 year, 10 months ago

3

Kanak Sharma 1 year, 10 months ago

2

Kanak Sharma 1 year, 10 months ago

😑😑😑
3
  • 1 answers

Preeti Dabral 1 year, 10 months ago

ABC is a given triangle with, AB=AC.

To prove: Angle opposite to AB= Angle
opposite to AC (i.e) ∠C=∠B

Construction: Draw AD perpendicular to BC
∴∠ADB=∠ADC=90o

Proof: 
Consider △ABD and △ACD

AD is common

AB=AC

∴∠ADB=∠ADC=90o

Hence ∠ABD=∠ACD
∠ABC=∠ACB
∠B=∠C. Hence the proof
This is known as Isosceles triangle theorem

  • 1 answers

Jay Srivastav 1 year, 10 months ago

Cubic polynomial
  • 1 answers

Rani Sahu 1 year, 10 months ago

Given: AB is line. C is point lies on AB. AC=BC. Prove: AC=1/2 AB Proof: Hence, AB = AC+ BC. (AC = BC) AB= AC +AC AB = 2AC AC=1/2 AB {Its because we have to prove that AC =1/2 AB, and for this we require to add AC .
  • 0 answers
  • 3 answers

Prineb Nehra 1 year, 10 months ago

Triangle is bounded by three sides

Aravinth Sivabalan.K 1 year, 10 months ago

A triangle is a polygon with three edges and three vertices. It is one of the basic shapes in geometry. A triangle with vertices A, B, and C is denoted \triangle ABC. In Euclidean geometry, any three points, when non-collinear, determine a unique triangle and simultaneously, a unique plane.

Aakriti Gupta 1 year, 10 months ago

Triangle are 3 side
  • 3 answers

Marh Power 1 year, 10 months ago

17/4 is right answer

Marh Power 1 year, 10 months ago

15/4

Aditya Rana 1 year, 10 months ago

4
  • 1 answers

Kashish Singh 1 year, 10 months ago

A plastic box 1.5m long, 1.25m wide and 65cm deep is to be made. It is opened at the top. Ignoring the thickness of the plastic sheet, determine:
  • 5 answers

__ Shashwat__ 1 year, 10 months ago

7

Aditya Rana 1 year, 10 months ago

7

Ansh Kumar 1 year, 10 months ago

7

Pupsita Behera 1 year, 10 months ago

7

Utkarsh Yadav 1 year, 10 months ago

7

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App