No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Sia ? 6 years, 6 months ago

{tex}\frac { 4 + \sqrt { 5 } } { 4 - \sqrt { 5 } } + \frac { 4 - \sqrt { 5 } } { 4 + \sqrt { 5 } }{/tex}
{tex}= \frac { ( 4 + \sqrt { 5 } ) ( 4 + \sqrt { 5 } ) + ( 4 - \sqrt { 5 } ) ( 4 - \sqrt { 5 } ) } { ( 4 - \sqrt { 5 } ) ( 4 + \sqrt { 5 } ) }{/tex}
{tex}= \frac { ( 4 + \sqrt { 5 } ) ^ { 2 } + ( 4 - \sqrt { 5 } ) ^ { 2 } } { ( 4 - \sqrt { 5 } ) ( 4 + \sqrt { 5 } ) }{/tex}
{tex}= \frac { \left\{ ( 4 ) ^ { 2 } + 2 ( 4 ) ( \sqrt { 5 } ) + ( \sqrt { 5 } ) ^ { 2 } \right\} + \left\{ ( 4 ) ^ { 2 } - 2 ( 4 ) ( \sqrt { 5 } ) + ( \sqrt { 5 } ) ^ { 2 } \right\} } { ( 4 ) ^ { 2 } - ( \sqrt { 5 } ) ^ { 2 } }{/tex}
{tex}= \frac { ( 16 + 8 \sqrt { 5 } + 5 ) + ( 16 - 8 \sqrt { 5 } + 5 ) } { 16 - 5 } = \frac { 42 } { 11 }{/tex}

  • 1 answers

Pramod Pant 6 years, 6 months ago

Rational numbers are the numbers that we can express in the form of p/q. For ex-3/6 ,4/9, etc.
  • 1 answers

Yogita Ingle 6 years, 6 months ago

5/7=0.7142     9/11=0.818181
first we have to change the  the number into decimal or rational
 decimal form of 5/7 is 0.71428571 and the decimal form of 9/11 is 81818181
hence the rational number are between 0.71428571 and 0.81818181

rational numbers between 5/7 and 9/11  
1) 0.72428571
2) 0.73428571
3) 0.74428571
      .
      .
      .
      .
upto 0.80818181
you can take any number between them as irrational.

 

  • 0 answers
  • 0 answers
  • 1 answers

Namrata Jindal 6 years, 6 months ago

= a^2 - a - b^2 - b = a^2 - b^2 - ( a + b) = (a+b)(a-b) -1(a+b) = (a+b)(a-b-1)
  • 0 answers
  • 1 answers

Sia ? 6 years, 6 months ago

Take AB= BC =  1cm
{tex}\angle B = {90^0}{/tex}
In {tex}\triangle{/tex}ABC
AC2 = AB2 + BC2
AC2 = 1 + 1
AC2 = 2
AC = {tex}\sqrt{2}{/tex}
In {tex}\triangle{/tex}OCD
{tex}\angle C = {90^0}{/tex} 
OD2 = OC2 + DC2
OD2 = ({tex}\sqrt{2}{/tex})2 + 1
OD2 = 2 + 1
OD2 = 3
OD = {tex}\sqrt{3}{/tex}

  • 0 answers
  • 2 answers

Sia ? 6 years, 6 months ago

First rational number between {tex}\frac{1}{2}{/tex} and {tex}\frac{1}{3}{/tex} 
{tex}= \frac{1}{2}\left[ {\frac{1}{2} + \frac{1}{3}} \right] \Rightarrow \frac{1}{2}\left[ {\frac{{3 + 2}}{6}} \right] \Rightarrow \frac{5}{{12}}{/tex}
{tex} {\text{ = }}\frac{{\text{1}}}{{\text{2}}}{\text{,}}\frac{{\text{5}}}{{{\text{12}}}}{\text{ and }}\frac{{\text{1}}}{{\text{3}}}{/tex}
Second rational number between{tex}\frac{1}{2}and\frac{1}{3}{/tex}
{tex} {\text{ = }}\frac{1}{2}\left[ {\frac{1}{2} + \frac{5}{{12}}} \right] \Rightarrow \frac{1}{2}\left[ {\frac{{6 + 5}}{{12}}} \right] \Rightarrow \frac{{11}}{{24}} {/tex}
{tex} {\text{ = }}\frac{5}{{12}}and\frac{{11}}{{24}}{\text{ are two rational numbers between }}\frac{1}{2}and\frac{1}{3} {/tex}

Sachin Ahlawat 6 years, 6 months ago

1/3=0.3 , 1/2 = 0.5 Rational no. Between 1/3 and1/2 are 0.35,0.40,0.37 etc
  • 2 answers

Rupa Goel 6 years, 6 months ago

Consider x12 – y12 = (x6)2 – (y6)2 = (x6 – y6)(x6 + y6) = [(x3)2 – (y3)2][(x2)3 – (y2)3] = [x3 – y3] [x3 + y3] [x2 – y2][x4 + x4y4 + y4] = (x – y)(x2 + xy +y2) (x + y)(x2 – xy +y2) (x – y)(x4 + x4y4 + y4)

Shorya Sharma 6 years, 6 months ago

12
  • 1 answers

Sia ? 6 years, 6 months ago

Given: Perimeter of rectangular wall = {tex}2\left( l+b \right){/tex} = 250 m ……….(i)
Now Area of the four walls of the room
={tex}\frac{\text{Total cost to paint walls of the room}}{\text{Cost to paint 1 }{{\text{m}}^{2}}\text{ of the walls}}{/tex}
={tex}\frac{15000}{10} = 1500 {{m}^{2}}{/tex} ……….(ii)
{tex}\because{/tex} Area of the four walls = Lateral surface area = {tex}2\left( bh+hl \right){/tex}={tex}2h\left( b+l \right){/tex} = 1500
{tex}\Rightarrow {/tex} {tex}250\times h=1500{/tex} [using eq. (i) and (ii)
{tex}\Rightarrow {/tex} {tex}h=\frac{1500}{250}{/tex} = 6 m
Hence required height of the hall is 6 m.

  • 3 answers

Sourabh Sharma 6 years, 6 months ago

No

Chinky Bhan 6 years, 6 months ago

No

Sachin Ahlawat 6 years, 6 months ago

No,it is not a rational no. Because it is non repeating and non terminating
  • 2 answers

Gangadhar N 4 years, 8 months ago

ho

Md Irshad 6 years, 6 months ago

Let x=2.3 X=2.333...... eq......(1) 10x=23.333.... eq.....(2) Now,subtract eq.1 from eq.2 10x-x=23.333-2.333 9x=21 X=9/21
  • 1 answers

Sameeksha V H 6 years, 6 months ago

5x^2-x-4/x^2+3x-4 By factorising it. We get (5x+4)(x-1)/(x+4)(x-1) Cancel (x-1) We get (5x+4)/(x+4)
  • 2 answers

Sia ? 6 years, 6 months ago

A rational number lying between {tex}\frac {3} {6}{/tex} and {tex}\frac 25{/tex}
{tex}\frac{\frac{3}{6}+\frac{2}{5}}{2}{/tex}{tex}=\frac{\frac{15+12}{30}}{2}{/tex}{tex}=\frac{\frac{27}{30}}{2}=\frac{27}{60}{/tex}

Sakshi Sahu 6 years, 6 months ago

The L.C.M of 6 and 5 is 30 We need to multiply 3/6 and 2/5 by 30 to get equal or same denominator 3/6×30/30 ; 2/5×30/30 90/360 ; 60/360 A rational no. between 3/6 & 2/5 is 67/360
  • 3 answers

Sia ? 6 years, 6 months ago

Infinitely many

Simrandeep Kaur 6 years ago

Thanks

45516111? 46 6 years, 6 months ago

Many
  • 1 answers

Samridhi ?? 6 years, 6 months ago

3+2=8 by mistake ???
  • 1 answers

Sia ? 6 years, 6 months ago

We have, x2 + 4 ix - 4 = 0 ...(i)
On comparing Eq. (i) with ax2 + bx + c = 0, we get
a = 1, b = 4 i and c = - 4
{tex}\because{/tex} x = {tex}\frac { - b \pm \sqrt { b ^ { 2 } - 4 a c } } { 2 a }{/tex}
{tex}\therefore{/tex} x = {tex}\frac { - 4 i \pm \sqrt { ( 4 i ) ^ { 2 } - 4 \times 1 \times ( - 4 ) } } { 2 \times 1 }{/tex}
{tex}\frac { - 4 i \pm \sqrt { - 16 + 16 } } { 2 }{/tex}
{tex}\frac { - 4 i } { 2 }{/tex} = - 2 i
Hence, the roots of the given equation are - 2 i and - 2 i.

  • 0 answers
  • 1 answers

Gaurav Seth 6 years, 6 months ago

( √3 + √2 ) / ( √3 - √2 )

= [(√3 + √2)(√3 + √2)]/[(√3-√2)(√3+√2)]

= ( √3 + √2 )² / [ (√3 )² - ( √2 )² ]

= [ (√3)² +2×(√3 )(√2) + (√2)² ]/(3-2)

= 3 + 2√6 + 2

= 5 + 2√6

  • 3 answers

Anusha Jha 6 years, 6 months ago

2x - 2 =16 2x =16 + 2 2x = 18 x = 18/2 x = 9

Yogita Ingle 6 years, 6 months ago

2x - 2 = 16
2x = 16 + 2
2x = 18
x = 18/2
x = 9

Piyush Paswan 6 years, 6 months ago

X=9
  • 1 answers

Purva Dhammi 6 years, 6 months ago

(4,0)

As it lies on x-axis so coordinate of y would be zero.

And right to the origin implies x to be positive

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App