No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 2 answers

Madhuri Lakhera 5 years, 3 months ago

we can write the euclid's fifth postulate so that it would be easier to you so when a line intersect two parallel lines at points two points and the sum of the interior angle is not equal to zero and their extent in the same direction and meet at the point same so it will

Kap Sharma 5 years, 3 months ago

A straight line P passes through the two straight lines M and N . If the sum of interior angles is less than the 180 degree then that side of lines will meet at a point Q. L1+L2 less than 180 degree.
  • 0 answers
  • 1 answers

Sia ? 5 years, 3 months ago

Given : ABC is a triangle in which altitude BE and CF to side AC and AB are equal.
To Prove : {tex}\triangle \mathrm { ABE } \cong \triangle \mathrm { ACF }{/tex}

  1. AB = AC i.e. {tex}\triangle{/tex}ABC is an isosceles triangle.
    Proof : BE = CF ...... [Given]
    ∠BAE = ∠CAF ...... [Common]
    ∠AFB = ∠AFC ....... [Each 90o]
    {tex}\therefore{/tex} {tex}\triangle \mathrm { ABE } \cong \triangle \mathrm { ACF }{/tex} ........ [By AAS property]
  2. {tex}\triangle A B E \cong \triangle A C F{/tex} ....... [As proved]
    {tex}\therefore{/tex} AB = AC . . .[c.p.c.t.]
    ​​​​​​​{tex}\therefore{/tex} {tex}\triangle{/tex}ABC is an isosceles triangle.
  • 1 answers

Pratham Jaim 5 years, 3 months ago

Use the identity of (x+a) (x+b) I.e- X²+(a+b)x+ab X²+(4+10)x+4*10 X²+14x+40
  • 2 answers

Madhuri Lakhera 5 years, 3 months ago

20000000000

Hariom Dalal 5 years, 3 months ago

Simple; 20,00,00,00,000
  • 1 answers

Sia ? 5 years, 3 months ago

Given: AD and BC are equal perpendiculars to a line segment AB.
To Prove: CD bisects AB
Proof : In OAD and OBC
{tex}\angle{/tex}AOD = {tex}\angle{/tex}BOC ...[Vertically opposite angles]
{tex}\angle{/tex}OAD = {tex}\angle{/tex}OBC ...[each 90°]
AD = BC ...[Given]
{tex}\therefore{/tex} DOAD {tex}\cong{/tex} DOBC ...[By AAS property]
{tex}\therefore{/tex} OA = OB ...[c.p.c.t.]
{tex}\therefore{/tex} CD bisects AB

  • 1 answers

Khushi Sharma 5 years, 3 months ago

Statistics
  • 4 answers

Hariom Dalal 5 years, 3 months ago

Definitely, herons formula

Ritu Sahu 5 years, 3 months ago

Chapter 5

Khushi Sharma 5 years, 3 months ago

Heron's formula

Nishu Kumar 5 years, 3 months ago

Geometry
  • 3 answers

Khushi Sharma 5 years, 3 months ago

x=0.4777777............... 1 10x=4.777777........... 2 100x=47.77777777777........ 3 3 equation -2equation 100x-10x=47-4 90x=43 x=43/90

Khushi Sharma 5 years, 3 months ago

X=0.47777777777777777777...........1 10x=4.77777777777777............. 100x=47.777777777777...............

Sachitanand Mishra 5 years, 3 months ago

4/9
  • 1 answers

Sia ? 5 years, 3 months ago

Let p(x) = x3 + 3x2 + 3x + 1
5 + 2x = 0
{tex}\Rightarrow{/tex} 2x = -5
{tex}\Rightarrow{/tex} x =  -{tex}\frac{5}{2}{/tex}
 = (-{tex}\frac{5}{2}{/tex})3 + 3(-{tex}\frac{5}{2}{/tex})2 + 3(-{tex}\frac{5}{2}{/tex}) + 1
 = -{tex}\frac{125}{8}{/tex} + {tex}\frac{75}{4}{/tex} - {tex}\frac{15}{2}{/tex} + 1 = -{tex}\frac{27}{8}{/tex} 

  • 1 answers

Lalithakumar Iyer 5 years, 3 months ago

a/b=0whete a can be any integer and b is 0.
  • 1 answers

Yogita Ingle 5 years, 3 months ago

Given x3+ 1/x3 =110
Recall that (x+1/x)3 = x3+ 1/x3 + 3(x+1/x)
Let (x+1/x)=a
⇒ a3 = 110 + 3a
⇒a3 − 3a −110=0
Put a=5
⇒ 53 − 3(5) −110
=125 −15 −110=0
Hence (a − 5) is a factor.
On dividing (a3 − 3a −110) with (a − 5) we get the quotient as (a2+5a+22)
∴ a3 − 3a −110 = (a − 5)(a2+5a+22) = 0
Hence (a − 5) = 0 and (a2+5a+22) ≠ 0
⇒(x+1/x) − 5=0
∴ (x+1/x) = 5

  • 1 answers

Yogita Ingle 5 years, 3 months ago

The square of a number is the number multiplied by itself. So, 22 is 2 × 2  , or two square and is equal to 4  .
In the same way, a number to the power of three is called the cube of the number. So <nobr aria-hidden="true">33</nobr> is <nobr aria-hidden="true">3×3×3</nobr>, or three cubed and is equal to <nobr aria-hidden="true">27</nobr>.

  • 4 answers

Sia ? 5 years, 3 months ago

Any integer that can be divided exactly by 2 is an even number.
The last digit is 0, 2, 4, 6 or 8
Any integer that cannot be divided exactly by 2 is an odd number.
The last digit is 1, 3, 5, 7 or 9

Ritu Sahu 5 years, 3 months ago

A number ends with 1,3,5,7,9 or that cannot divisible by 2 are called odd numbers

Ritu Sahu 5 years, 3 months ago

A number ends with 2,4,0,6,8,are called even numbers or number divisible from 2

Yogita Ingle 5 years, 3 months ago

Even numbers always end with a digit of 0, 2, 4, 6 or 8.
2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 are even numbers.

Odd numbers always end with a digit of 1, 3, 5, 7, or 9.
1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 are odd numbers.

  • 3 answers

Khushi Sharma 5 years, 3 months ago

Rational number because both number have odd number at thrir end

Ankit Patel 5 years, 3 months ago

Rational no. As it can be represented in the form of p/q where q is not equal to 0.

Dumpala Jaswanth Reddy 5 years, 3 months ago

Rational number
  • 2 answers

Sia ? 5 years, 3 months ago

{tex}( a + b + c ) ^ { 3 } = [ a + ( b + c ) ] ^ { 3 }{/tex}

{tex}= a ^ { 3 } + 3 a ^ { 2 } ( b + c ) + 3 a ( b + c ) ^ { 2 } + ( b + c ) ^ { 3 }{/tex}

{tex}= a ^ { 3 } + 3 a ^ { 2 } b + 3 a ^ { 2 } c + 3 a[ \left( b ^ { 2 } + 2 b c + c ^ { 2 } \right)] + \left( b ^ { 3 } + 3 b ^ { 2 } c + 3 b c ^ { 2 } + c ^ { 3 } \right){/tex}

{tex}= a ^ { 3 } + 3 a ^ { 2 } b + 3 a ^ { 2 } c + 3 a b ^ { 2 } + 6 a b c + 3 a c ^ { 2 } + b ^ { 3 } + 3 b ^ { 2 } c + 3 b c ^ { 2 } + c ^ { 3 }{/tex}

{tex}= a ^ { 3 } + b ^ { 3 } + c ^ { 3 } + 3 a ^ { 2 } b + 3 a ^ { 2 } c + 3 b ^ { 2 } c + 3 b ^ { 2 } a + 3 c ^ { 2 } a + 3 c ^ { 2 } b + 6 a b c{/tex}

{tex}= a ^ { 3 } + b ^ { 3 } + c ^ { 3 } + 3 a ^ { 2 } ( b + c ) + = a ^ { 3 } + b ^ { 3 } + c ^ { 3 } + 3 a ^ { 2 } ( b + c ){/tex}

{tex}\therefore{/tex}{tex}( a + b + c ) ^ { 3 } = a ^ { 3 } + b ^ { 3 } + c ^ { 3 } + 3 ( a + b ) ( b + c ) ( c + a ){/tex}

 

Khushi Sharma 5 years, 3 months ago

(a+b+c)³=(a+b)³+c³+3(a-b)c(a+b+c)
  • 1 answers

Rimpa Goswami Goswami 5 years, 3 months ago

9
  • 2 answers

Surbhii Mittal 5 years, 3 months ago

Let x= 0.9- 1 ( 9 ke uper baar) multiply by 10 ( beca. We hv to shift 9 before the decimal point ) so, 10x=9.9 - 2 subract equation 1 from 2 answer is 9x=9 ,x=1

A Gautam 5 years, 3 months ago

Let 0.9999... be x x = 0.9999..... 10x = 10*0.9999.... 10x = 9.9999.... 10x-x = 9.9999.. -0.9999.. 9x = 9 x = 9 divided by 9 x = 1
  • 1 answers

Khushi Sharma 5 years, 3 months ago

Oof
  • 3 answers

Ritu Sahu 5 years, 3 months ago

√x is we can write9.3 Drwa a line then cut an arc to the both end points that bisect each other, then draw a semicircle through the point and then draw 99degree then from the 90 degree join it to the line

Rahul Singh 5 years, 3 months ago

1

Rohan Saikia 5 years, 3 months ago

Muje bhe batana
  • 2 answers

Ria Rockstar 5 years, 3 months ago

There are step to construct √3 on numberline . 1) draw a line and mark it as AB. 2) add 1 cm to previous line and mark it as C 3) now, take a base of 2 cm and height 1 cm on numberline and mark it as D . Now draw line from A to D. 4) use pythagoras theoram and remark the line AD as √3 . 5) place a rounder on point B and make an arch , which reaches numberline . Place of intersection of arch at numberline is √3.

Govind Natani 5 years, 3 months ago

It is not typed but the value of√3 is 1.732 aproxx
  • 1 answers

Laxmi Kannolli 5 years, 3 months ago

7 raised to 5 - 3 x raised to 4 zero x cube + 2 x square - 5 x divided by X + 2 x square
  • 1 answers

Yogita Ingle 5 years, 3 months ago

The pairs of angles on one side of the transversal but inside the two lines are called Consecutive Interior Angles.

  • 2 answers

Amritanshu Singh 5 years, 3 months ago

x=4+2y

Manav M? 5 years, 3 months ago

So what
  • 1 answers

Sharvesth Sharma 5 years, 3 months ago

Pta nhi
  • 1 answers

Sia ? 5 years, 3 months ago

Let {tex}\sqrt 5{/tex} is a rational number.
{tex}\sqrt { 5 } = \frac { a } { b }{/tex}(a, b are co-primes and b{tex}\neq{/tex}0)
or, {tex}a = b \sqrt { 5 }{/tex}
On squaring both the sides, we get
 a2=5b2  ---------------------------------(1)
Hence 5 is a factor of a2
so  5 is a factor of a
Let a = 5c, (c is some integer)
{tex}\therefore{/tex} a2 = 25c2 

From equation(1) putting the value of a2
or, 5b2 = 25c2

or b2=5c2

so 5 is a factor of b2
or  5 is a factor of b
Hence 5 is a common factor of a and b
But this contradicts the fact that a and b are co-primes.

This is because we assumed that {tex}\sqrt 5{/tex} is rational
{tex}\therefore{/tex} {tex}\sqrt 5{/tex} is irrational.

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App