Ask questions which are clear, concise and easy to understand.
Ask QuestionPosted by Riya Kumari 6 years, 5 months ago
- 1 answers
Posted by Rakesh Kumar 6 years, 5 months ago
- 0 answers
Posted by Neha Krishnan 6 years, 5 months ago
- 1 answers
Sia ? 6 years, 5 months ago
As we know,
{tex}a ^ { 3 } + b ^ { 3 } + c ^ { 3 } - 3 a b c ={/tex}{tex}( a + b + c ) \left( a ^ { 2 } + b ^ { 2 } + c ^ { 2 } - a b - b c - c a \right){/tex}
{tex}= ( a + b + c ) \left[ a ^ { 2 } + b ^ { 2 } + c ^ { 2 } - ( a b + b c + c a ) \right]{/tex}
{tex}= 5 \left\{ a ^ { 2 } + b ^ { 2 } + c ^ { 2 } - ( a b + b c + c a ) \right\}{/tex}
{tex}= 5 \left( a ^ { 2 } + b ^ { 2 } + c ^ { 2 } - 10 \right){/tex}
Now, {tex} a + b + c = 5{/tex}
Squaring both sides, we get
{tex}( a + b + c ) ^ { 2 } = 5 ^ { 2 }{/tex}
{tex}\Rightarrow a ^ { 2 } + b ^ { 2 } + c ^ { 2 } + 2 ( a b + b c + c a ) = 25{/tex}
{tex}\therefore a ^ { 2 } + b ^ { 2 } + c ^ { 2 } + 2 ( 10 ) = 25{/tex}
{tex}\Rightarrow a ^ { 2 } + b ^ { 2 } + c ^ { 2 } = 25 - 20 = 5{/tex}
Now, {tex}a ^ {3} + b ^ {3} + c ^ { 3 } - 3 a b c = 5 \left( a ^ { 2 } + b ^ { 2 } + c ^ { 2 } - 10 \right){/tex}
{tex}= 5 ( 5 - 10 ) = 5 ( - 5 ) = - 25{/tex}
Hence, proved.
Posted by Tanushka Rawat 6 years, 5 months ago
- 4 answers
Posted by Pradum Dubey 6 years, 5 months ago
- 1 answers
Posted by Dayaram Yadav 6 years, 5 months ago
- 0 answers
Posted by Green Tea 6 years, 5 months ago
- 0 answers
Posted by Keimah Thingtlang Naupangfela 6 years, 5 months ago
- 0 answers
Posted by Harsh Patel 6 years, 5 months ago
- 2 answers
Posted by Rima Tiwary 6 years, 5 months ago
- 0 answers
Posted by Sunil Harjai 6 years, 5 months ago
- 1 answers
Sia ? 6 years, 5 months ago
The rational number {tex}\left(\frac{-2}{3}+\frac{1}{4}\right){/tex}{tex}\div{/tex} 2 lies in the middle of the two given rational numbers, that is, {tex}\frac{-2}{3}{/tex} and {tex}\frac{1}{4}{/tex}.
Now, {tex}\left(\frac{-2}{3}+\frac{1}{4}\right){/tex} = {tex}\frac{(-2) \times 4 + 3 \times 1}{12}{/tex} = {tex}\frac{-8+3}{12}{/tex} = {tex}\frac{-5}{12}{/tex}
{tex}\therefore{/tex} {tex}\left(\frac{-2}{3}+\frac{1}{4}\right){/tex} {tex}\div{/tex} 2 = {tex}\frac{-5}{12}{/tex} {tex}\div{/tex} 2 = {tex}\frac{-5}{12}{/tex} {tex}\times{/tex} {tex}\frac{1}{2}{/tex} = {tex}\frac{-5}{24}{/tex}
Thus, the required rational number is {tex}\frac{-5}{24}{/tex}. That is, {tex}\frac{-2}{3}{/tex} < {tex}\frac{-5}{24}{/tex} < {tex}\frac{1}{4}{/tex}.
Posted by Sagar Gupta 6 years, 5 months ago
- 2 answers
Posted by Lata Singh 6 years, 5 months ago
- 1 answers
Posted by Bhoomi Mishra 6 years, 5 months ago
- 2 answers
Posted by Sri Hari 6 years, 5 months ago
- 1 answers
Posted by Navneet Ghuman 6 years, 5 months ago
- 2 answers
Posted by Vrushabh Tubachi 6 years, 5 months ago
- 0 answers
Posted by Banny Sundrapalli 6 years, 5 months ago
- 3 answers
Sunny Kumar 6 years, 5 months ago
Narendra Kumar 6 years, 5 months ago
Ruchika Aggarwal 6 years, 5 months ago
Posted by Mahi Singh 6 years, 5 months ago
- 2 answers
Chirag Sharma 6 years, 5 months ago
Manjunatha Setty K A 6 years, 5 months ago
Posted by Ashmit Gardia 6 years, 5 months ago
- 3 answers
Mahi Singh 6 years, 5 months ago
Yogita Ingle 6 years, 5 months ago
Using the identity (a + b)3 = a3 + b3 + 3a2b + 3ab2 , we have , we have
= (3a)3 + (4b)3 + 3 (3a)2(4b) + 3(3a) (4b)2
= 27a3 + 64b3 + 108a2b + 144ab2
which is the required expanded form.
Posted by Sumit Karan 6 years, 5 months ago
- 1 answers
Sia ? 6 years, 5 months ago
According to question it is given that
Radius of cylindrical tub = 12 cm
Depth of cylindrical tub = 20 cm
Let us suppose that (r) be the radius of spherical ball
Again it is given that level of water is raised by 6.75 cm
Now, according to the question,
Volume of spherical ball = Volume of water rise in cylindrical tub
{tex}\Rightarrow \quad \frac { 4 } { 3 } \pi r ^ { 3 } = \pi ( 12 ) ^ { 2 } \times 6.75{/tex}
{tex}\Rightarrow \frac { 4 } { 3 } r ^ { 2 } = 12 \times 12 \times 6. 75{/tex}
{tex}\Rightarrow \quad r ^ { 3 } = \frac { 12 \times 12 \times 6.75 \times 3 } { 4 }{/tex}
{tex}\Rightarrow \quad r ^ { 3 } = 729{/tex}
{tex}\Rightarrow \quad r = \sqrt [ 3 ] { 729 } = 9 \mathrm { cm }{/tex}
Therefore, Radius of the ball = 9 cm
Posted by Yash Sihag 6 years, 5 months ago
- 1 answers
Posted by Hariom Dalal 6 years, 5 months ago
- 2 answers
Sia ? 6 years, 5 months ago
Let in {tex}\bigtriangleup{/tex}ABC, exterior {tex}\angle{/tex}ACE = 115o and {tex}\angle{/tex}A = 35o
We know that,
{tex}\angle{/tex}ACE = {tex}\angle{/tex}A + {tex}\angle{/tex}B (Exterior Angle Theorem)
{tex}\Rightarrow{/tex} 115o = 35o + {tex}\angle{/tex}B
{tex}\angle{/tex}B = 115o – 35o = 80o
Again, in {tex}\bigtriangleup{/tex}ABC,
{tex}\angle{/tex}A + {tex}\angle{/tex}B + {tex}\angle{/tex}C = 180o
(The sum of the three angles of a triangle is 180o)
{tex}\Rightarrow{/tex} 35o + 80o + {tex}\angle{/tex}C = 180o
{tex}\Rightarrow{/tex} 115o + {tex}\angle{/tex}C = 180o
{tex}\Rightarrow{/tex} {tex}\angle{/tex}C = 180o – 115o = 65o

Srishtika Murugan 6 years, 5 months ago
Posted by Balamourougane Balamourougane 6 years, 5 months ago
- 0 answers
Posted by Uttpan Patnaik 6 years, 5 months ago
- 1 answers
Sia ? 6 years, 5 months ago
Suppose {tex}\sqrt2{/tex} is a rational number. That is , {tex}\sqrt2{/tex} = {tex}\frac{p}{q}{/tex} for some p{tex}\in{/tex}Z and q {tex}\in{/tex}Z. We can assume the fraction is in lowest fraction, That is p and q shares no common factors.
Then {tex}\sqrt2q=p{/tex}
Squaring both side we get,
{tex}2q^2=p^2{/tex}
So {tex}p^2{/tex} is a multiple of 2,
let's assume {tex}p=2m{/tex}
Then, {tex}2q^2=\left(2m\right)^2{/tex}
{tex}2q^2=4m^2{/tex}
Or {tex}q^2=2m^2{/tex}
So {tex}q^2{/tex} is a multiple of 2,
{tex}\therefore{/tex} q is multiple of 2
Thus p and q shares a common factor.This is contradiction.
{tex}\Rightarrow {/tex}{tex}\sqrt { 2 }{/tex} is an irrational number.
Posted by Jatin Garg 6 years, 5 months ago
- 0 answers
Posted by Rishita Gupta 6 years, 5 months ago
- 4 answers
Posted by Shu Kurenai 6 years, 5 months ago
- 0 answers
Posted by Shrinithi Vasuki 6 years, 5 months ago
- 1 answers
Ranveer Srivastava 6 years, 5 months ago

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sunny Kumar 6 years, 5 months ago
0Thank You