No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Sia ? 5 years, 3 months ago

We have,
{tex}\frac{2 \sqrt{6}-\sqrt{5}}{3 \sqrt{5}-2 \sqrt{6}}{/tex} = {tex}\frac{2 \sqrt{6}-\sqrt{5}}{3 \sqrt{5}-2 \sqrt{6}} \times \frac{3 \sqrt{5}+2 \sqrt{6}}{3 \sqrt{5}+2 \sqrt{6}}{/tex}
{tex}\frac{(2 \sqrt{6}-\sqrt{5})(3 \sqrt{5}+2 \sqrt{6})}{(3 \sqrt{5}-2 \sqrt{6})(3 \sqrt{5}+2 \sqrt{6})}{/tex}
{tex}\frac{2 \sqrt{6}(3 \sqrt{5}+2 \sqrt{6})-\sqrt{5}(3 \sqrt{5}+2 \sqrt{6})}{(3 \sqrt{5})^{2}-(2 \sqrt{6})^{2}}{/tex}
{tex}\frac{6 \sqrt{30}+24-15-2 \sqrt{30}}{45-24}{/tex}
{tex}\frac{4 \sqrt{30}+9}{21}{/tex}
{tex}\therefore{/tex} {tex}\frac{2 \sqrt{6}-\sqrt{5}}{3 \sqrt{5}-2 \sqrt{6}}{/tex} = {tex}\frac{4 \sqrt{30}+9}{21}{/tex}

  • 2 answers

Chaitanya Hadpe 5 years, 3 months ago

-x=180 x=-180

Sunny Kumar 5 years, 3 months ago

-x=180 -1x=180 -X=180/1 X=180 Ans
2.2
  • 0 answers
  • 1 answers

Karishma Saini 5 years, 3 months ago

Yellow blue orange red
  • 1 answers

Sunny Kumar 5 years, 3 months ago

Ya a2-b2=(a+b) (a-b)
  • 1 answers

Sunny Kumar 5 years, 3 months ago

(a+b)2
  • 0 answers
  • 1 answers

Sia ? 5 years, 3 months ago

As we know, 

{tex}a ^ { 3 } + b ^ { 3 } + c ^ { 3 } - 3 a b c ={/tex}{tex}( a + b + c ) \left( a ^ { 2 } + b ^ { 2 } + c ^ { 2 } - a b - b c - c a \right){/tex}

{tex}= ( a + b + c ) \left[ a ^ { 2 } + b ^ { 2 } + c ^ { 2 } - ( a b + b c + c a ) \right]{/tex}

{tex}= 5 \left\{ a ^ { 2 } + b ^ { 2 } + c ^ { 2 } - ( a b + b c + c a ) \right\}{/tex}

{tex}= 5 \left( a ^ { 2 } + b ^ { 2 } + c ^ { 2 } - 10 \right){/tex}

Now, {tex} a + b + c = 5{/tex}

Squaring both sides, we get

{tex}( a + b + c ) ^ { 2 } = 5 ^ { 2 }{/tex}

{tex}\Rightarrow a ^ { 2 } + b ^ { 2 } + c ^ { 2 } + 2 ( a b + b c + c a ) = 25{/tex}

{tex}\therefore a ^ { 2 } + b ^ { 2 } + c ^ { 2 } + 2 ( 10 ) = 25{/tex}

{tex}\Rightarrow a ^ { 2 } + b ^ { 2 } + c ^ { 2 } = 25 - 20 = 5{/tex}

Now, {tex}a ^ {3} + b ^ {3} + c ^ { 3 } - 3 a b c = 5 \left( a ^ { 2 } + b ^ { 2 } + c ^ { 2 } - 10 \right){/tex}

{tex}= 5 ( 5 - 10 ) = 5 ( - 5 ) = - 25{/tex}

Hence, proved.

  • 4 answers

Sunny Kumar 5 years, 3 months ago

Yes 2+2=4 it will always be a rational no

Nikita Virmani 5 years, 3 months ago

Yes The sum of rational is always rational

Ayan Ali 5 years, 3 months ago

Yes always be rational no.

M M 5 years, 4 months ago

yes
  • 1 answers

Ishika Darpe 5 years, 4 months ago

a^3+b^3+c^3-3abc = (a+b+c)(a^2+b^2+c^2-ab-bc-ca)
  • 0 answers
  • 0 answers
  • 0 answers
  • 2 answers

Sunny Kumar 5 years, 3 months ago

Root 2 is an irrational

Srishtika Murugan 5 years, 4 months ago

Root 2 is an irrational no.
  • 1 answers

Sia ? 5 years, 4 months ago

The rational number {tex}\left(\frac{-2}{3}+\frac{1}{4}\right){/tex}{tex}\div{/tex} 2 lies in the middle of the two given rational numbers, that is,  {tex}\frac{-2}{3}{/tex} and {tex}\frac{1}{4}{/tex}.
Now, {tex}\left(\frac{-2}{3}+\frac{1}{4}\right){/tex} = {tex}\frac{(-2) \times 4 + 3 \times 1}{12}{/tex} = {tex}\frac{-8+3}{12}{/tex} = {tex}\frac{-5}{12}{/tex}
{tex}\therefore{/tex} {tex}\left(\frac{-2}{3}+\frac{1}{4}\right){/tex} {tex}\div{/tex} 2 = {tex}\frac{-5}{12}{/tex} {tex}\div{/tex} 2 = {tex}\frac{-5}{12}{/tex} {tex}\times{/tex} {tex}\frac{1}{2}{/tex} = {tex}\frac{-5}{24}{/tex}
Thus, the required rational number is {tex}\frac{-5}{24}{/tex}. That is, {tex}\frac{-2}{3}{/tex} < {tex}\frac{-5}{24}{/tex} < {tex}\frac{1}{4}{/tex}.

  • 2 answers

Railway Hub 5 years, 4 months ago

9

Sagar Gupta 5 years, 4 months ago

20
  • 1 answers

Dipanshu Verma 5 years, 4 months ago

hiii
  • 2 answers

Aditi Mundhe 5 years, 4 months ago

4 x 1/2 4/2 =2

Upllakshaya Jain 5 years, 4 months ago

2
  • 2 answers

Ayan Ali 5 years, 3 months ago

Yes

Aditi Mundhe 5 years, 4 months ago

SSS and RJS are none of the criterias of congruency.
  • 3 answers

Sunny Kumar 5 years, 3 months ago

6x+15x-6x+15 by(middle term split) 3x(2x-5x)-3(2x-5x) (3x-3) (2x-5x) I ? think the question is wrong because the right Question is 6x2square +9x +15

Narendra Kumar 5 years, 4 months ago

6x+19x+15 6x+9x+10x+15 3x(2x+3)+5(2x+3) (2x+3)(3x+5)

Ruchika Aggarwal 5 years, 4 months ago

6x^2+19x+15 6x^2+9x+10x+15 3x(2x+3)+5(2x+3) (3x+5)(2x+3)
  • 2 answers

Chirag Sharma 5 years, 4 months ago

He used the term 'POSTULATE' for the assumption that geomatry. AXIOMS are also true statement in which they are appiabale for only mathematics are called axioms.

Manjunatha Setty K A 5 years, 4 months ago

Axioms are true statements in which they are applicable for only mathematics are called axioms Postulates are also true statements in which they are applicable for only geometry
  • 3 answers

Sarthak Shavarn 5 years, 4 months ago

Abe nikal yaha se

Mahi Singh 5 years, 4 months ago

(3a)(3a)(3a) +(4b)(4b)(4b) +3(3a)(4b)(3a+4b) 27a³+64b³+108a²b+144ab²

Yogita Ingle 5 years, 4 months ago

Using the identity (a + b)3 = a3 + b3 + 3a2b + 3ab2 , we have  , we have
= (3a)3 + (4b)3 + 3 (3a)2(4b) + 3(3a) (4b)2
= 27a3 + 64b3 + 108a2b + 144ab2

which is the required expanded form.

  • 1 answers

Sia ? 5 years, 4 months ago

According to question it is given that
Radius of cylindrical tub = 12 cm
Depth of cylindrical tub = 20 cm
Let us suppose that  (r) be the radius of spherical ball 
Again it is given that level of water is raised by  6.75 cm
Now, according to the question,
Volume of spherical ball = Volume of water rise in cylindrical tub
{tex}\Rightarrow \quad \frac { 4 } { 3 } \pi r ^ { 3 } = \pi ( 12 ) ^ { 2 } \times 6.75{/tex}
{tex}\Rightarrow \frac { 4 } { 3 } r ^ { 2 } = 12 \times 12 \times 6. 75{/tex}
{tex}\Rightarrow \quad r ^ { 3 } = \frac { 12 \times 12 \times 6.75 \times 3 } { 4 }{/tex}
{tex}\Rightarrow \quad r ^ { 3 } = 729{/tex}
{tex}\Rightarrow \quad r = \sqrt [ 3 ] { 729 } = 9 \mathrm { cm }{/tex}
Therefore, Radius of the ball = 9 cm

  • 1 answers

Vrushabh Tubachi 5 years, 4 months ago

Using identity solve (x-3)(x+3)
  • 2 answers

Sia ? 5 years, 4 months ago

Let in {tex}\bigtriangleup{/tex}ABC, exterior {tex}\angle{/tex}ACE = 115o and {tex}\angle{/tex}A = 35o
We know that,
{tex}\angle{/tex}ACE = {tex}\angle{/tex}A + {tex}\angle{/tex}B (Exterior Angle Theorem)
{tex}\Rightarrow{/tex} 115o = 35o + {tex}\angle{/tex}B
{tex}\angle{/tex}B = 115o – 35o = 80o
Again, in {tex}\bigtriangleup{/tex}ABC,
{tex}\angle{/tex}A + {tex}\angle{/tex}B + {tex}\angle{/tex}C = 180o
(The sum of the three angles of a triangle is 180o)
{tex}\Rightarrow{/tex} 35o + 80o + {tex}\angle{/tex}C = 180o
{tex}\Rightarrow{/tex} 115o + {tex}\angle{/tex}C = 180o
{tex}\Rightarrow{/tex} {tex}\angle{/tex}C = 180o – 115o = 65o

Srishtika Murugan 5 years, 4 months ago

In the figure, By linear pair axiom, Angle ACB = 180 - 115 =65 By angle sum property, Angle ABC=180-(AngleBAC +AngleACB)=180-(35+65)=180-100=80
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App