No products in the cart.

Ask questions which are clear, concise and easy to understand.

Ask Question
  • 1 answers

Sia ? 6 years, 3 months ago

We have, {tex}x^{2}+\frac{1}{x^{2}}=34{/tex}
Also,
{tex}\Rightarrow\left(x+\frac{1}{x}\right)^{2}=x^{2}+\frac{1}{x^{2}}+2 x^{2} \times \frac{1}{x^{2}}{/tex}
{tex}\Rightarrow \left(x+\frac{1}{x}\right)^{2}=34+2{/tex}
{tex}\Rightarrow \ n+\frac{1}{n}=\sqrt{36}=6{/tex}
Now,
{tex}\Rightarrow \left(x+\frac{1}{x}\right)^{3}=x^{3}+\frac{1}{x^{3}}+3 x_{\times} \frac{1}{x}\left(x+\frac{1}{x}\right){/tex}
{tex}\Rightarrow 6^{3}=x^{3}+\frac{1}{x^{3}}+3 \times 6{/tex}
{tex}\Rightarrow \quad x^{3}+\frac{1}{x^{3}}{/tex}= 216 - 18
{tex} x^{3}+\frac{1}{x^{3}}-9{/tex}= 216 - 18 - 9
= 216 - 27
=189
 

Ifx
  • 0 answers
  • 1 answers

Sia ? 6 years, 3 months ago

Given: A quadrilateral ABCD.
To prove: AB + BC + CD + DA > AC + BD
Proof: In {tex}\Delta ABC{/tex}, we have

AB + BC > AC…(1) [{tex}\because{/tex} Sum of the lengths of any two sides of a triangle must be greater than the third side]
In {tex}\Delta BCD{/tex}, we have
BC + CD > BD...(2) [Same reason]
In {tex}\Delta CDA{/tex}, we have
CD + DA > AC…(3) [Same reason]
In {tex}\Delta DAB{/tex}, we have
AD + AB > BD…(4) [Same reason]
Adding (1), (2), (3) and (4), we get
AB + BC + BC + CD + CD + DA + AD + AB > AC + BD + AC + BD
{tex}\Rightarrow{/tex} 2AB + 2BC + 2CD + 2DA > 2AC + 2BD
{tex}\Rightarrow{/tex} 2(AB + BC + CD + DA) > 2(AC + BD)
{tex}\Rightarrow{/tex} AB + BC + CD + DA > AC + BD
Hence, proved.

  • 2 answers

Ayushi Maheshwari 6 years, 3 months ago

4x+2

Aditiya Super 30 6 years, 3 months ago

4x+2=0. 4x=-2. X=-1/2
  • 0 answers
  • 3 answers

Chirag Sharma 6 years, 3 months ago

Longest side - AB Shortest side - AC

Anjali Arya 6 years, 3 months ago

AB is longest &AC is shortest

Manav M? 6 years, 3 months ago

AB is the longest side and AC is the shortest
  • 1 answers

Manish Kumar 6 years, 3 months ago

Three types of line Line Line segment Ray
  • 0 answers
  • 3 answers

Gaurav Seth 6 years, 3 months ago

Question: In a ∆ABC, AB = 15 cm, BC = 13 cm and AC = 14 cm. Find the area of ∆ABC and hence its altitude on AC.

Answer 

The triangle sides are

 

Let a = AB = 15 cm, BC = 13 cm = b, c = AC = 14 cm say

Now,

Ritu Devi 6 years, 3 months ago

1/2*13*15= 97.5

Ritu Devi 6 years, 3 months ago

15+13+14
  • 1 answers

Shubham Garg 6 years, 3 months ago

y = 9 - 5x / 3
  • 0 answers
  • 2 answers

Brijesh Kumar 6 years, 3 months ago

a+b+c ka holiskkyar

Purvi Shah 6 years, 3 months ago

Draw a 26cm line on a page and and draw 1 cm more and then draw the perpendicular biscetor of it.After drawing the bisector u will get a mid pont name it B and keep the rounder at point B and draw a semi circle where the semi circle ends name it point C and from point C draw a line attaching to semi circle and from the the length of attachment dram the cuve line with the help of rounder
  • 7 answers

Anmoldeep Singh Singh 6 years, 3 months ago

X=-9/2

Ritu Devi 6 years, 3 months ago

2x = - 9 X= - 9/2 X = - 4.5

?☺???Hrishi Khapekar???☺? 6 years, 3 months ago

-4.5

Yashika Yadav 6 years, 3 months ago

X=-9/2

Ankit Kumar 6 years, 3 months ago

Locate √26 in number line

Badal Sahu 6 years, 3 months ago

X=-9/2

Ashutosh Sharma 6 years, 3 months ago

X=-9/2
  • 1 answers

Sia ? 6 years, 3 months ago

{tex}4+\frac{\sqrt{5}}{4} \ - \sqrt{5}+\frac{4-\sqrt{5}}{4}+\sqrt{5}{/tex}
{tex}=4+\frac{\sqrt{5}}{4}+\frac{4-\sqrt{5}}{4}{/tex}
{tex}=\frac{16+\sqrt{5}+(4-\sqrt{5})}{4}{/tex}
{tex}=\frac{16+\sqrt{5}+4-\sqrt{5}}{4}{/tex}
{tex}=\frac{20}{4}{/tex}
=5
 

  • 2 answers

Badal Sahu 6 years, 3 months ago

721

Brijbhushan Singh 6 years, 3 months ago

516
  • 2 answers

Agam Tyagi 6 years, 3 months ago

21/99

Priyanshu Ghosh 6 years, 3 months ago

21/99 is rhe correct answer or not
  • 2 answers

Ankit Kumar 6 years, 3 months ago

(2,0)

Brijbhushan Singh 6 years, 3 months ago

Let x 0

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App