Ask questions which are clear, concise and easy to understand.
Ask QuestionPosted by Dipankar Nath 8 years, 5 months ago
- 1 answers
Posted by Ashish Sharma 8 years, 5 months ago
- 2 answers
Dharmendra Kumar 8 years, 4 months ago
(x+4)(x+10)=x(x+10)+4(x+10)
=x2+10x+4x+4×10
=x2+14x+40
Posted by Ajay Karthikeya 8 years, 5 months ago
- 1 answers
Soumya Ghoshal 8 years, 5 months ago
(X+y-3)+k(2x-y-2)=0
Now, at (1,1), K=-1
Putting the value of K ,we get,
x+y-3 -2x+y+2=0
Or, - x+2y-1=0
Or, x-2y=-1
This is the equation of the bisector of the angle.
Posted by Rashi Jain 8 years, 5 months ago
- 1 answers
Payal Singh 8 years, 4 months ago
{tex}(3\sqrt 3+2\sqrt 3)(2\sqrt 3+3\sqrt 2){/tex}
= {tex}(5\sqrt 3)(2\sqrt 3+3\sqrt 2){/tex}
= {tex}10\times 3+15\sqrt 6{/tex}
= {tex}30+15\sqrt 6{/tex}
Posted by Ajay Karthikeya 8 years, 5 months ago
- 2 answers
Hans Raj 8 years, 5 months ago
Given
1st term a1 = -2 , ..............10th term a10 = 16 , .................100th term a100 = ?
we know that
an = a1 + (n -1)d ........... a10 =a1 + (10 - 1) d...................... 16 = -2 + 9d ..................... d = 18/9 ....... .... d = 2
a100 = a1 + (100 - 1) 2...........a100 = -2 + 99x2 ........................ a100 = -2 + 198 ............... a100 = 196
Payal Singh 8 years, 5 months ago
First term of AP a = -2
Let common difference = d
As we know
{tex}a_n = a+(n-1)d{/tex}
=> {tex}a_{10} = a+(10-1)d{/tex}
=> 16 = -2+9d
=> 9d= 18
=> d= 2
{tex}a_{100} = a+99d{/tex}
=> {tex}a_{100}=-2+(99\times 2){/tex}
{tex}=>> a_{100}= -2+198=196{/tex}
Posted by Piyush Singh 8 years, 5 months ago
- 1 answers
Payal Singh 8 years, 5 months ago
{tex}9x^2+6x+1-25y^2{/tex}
{tex}= (3x)^2+2\times 3x\times 1+(1)^2-(5y)^2{/tex}
{tex}= (3x+1)^2-(5y)^2{/tex}
{tex}= (3x+1-5y)(3x+1+5y){/tex}
Posted by Piyush Singh 8 years, 5 months ago
- 2 answers
Hans Raj 8 years, 5 months ago
{tex}9x^2+6x+1-25y^2{/tex}.......................... {tex}(3x)^2 + (2x3xx1) + (1)^2 -25y^2{/tex}.................................applying Rule {tex}(a+b)^2 = a^2+b^2+2ab {/tex}
.{tex}(3x + 1)^2 - (5y)^2{/tex} ........................... . {tex}(3x+1+5y)(3x+1-5y){/tex} .................................. .... applying Rule {tex}a^2 - b^2 = (a+b) (a-b){/tex}
Naveen Sharma 8 years, 5 months ago
Ans.
{tex}9x^2+6x+1-25y^2{/tex}
{tex}= (3x)^2+(2\times 3x\times 1)+(1)^2-25y^2{/tex} [using {tex}(a+b)^2 = a^2+2ab+b^2{/tex}]
{tex}= (3x+1)^2-(5y)^2{/tex}
{tex}= (3x+1-5y)(3x+1+5y){/tex} [using {tex}a^2-b^2 = (a+b)(a-b)]{/tex}
Posted by Sandeep Sood 8 years, 5 months ago
- 1 answers
Rashmi Bajpayee 8 years, 5 months ago
Let the side of equilateral triangle be a and let the perpendicular drawn to sides be OP = 10 cm, OQ = 14 cm and OR = 6 cm.
Join OA, OB and OC.
According to question,
Area of equilateral triangle ABC = Area of {tex}\Delta{/tex}OBC + Area of {tex}\Delta{/tex}OCA + Area of {tex}\Delta{/tex}OAB
=> {tex}{{\sqrt 3 } \over 4}{a^2} = {1 \over 2} \times {\rm{BC}} \times {\rm{OP}} + {1 \over 2} \times {\rm{AC}} \times {\rm{OQ}} + {1 \over 2} \times {\rm{AB}} \times {\rm{OR}}{/tex}
=> {tex}{{\sqrt 3 } \over 4}{a^2} = {1 \over 2} \times 10 \times a + {1 \over 2} \times 14 \times a + {1 \over 2} \times 6 \times a{/tex}
=> {tex}{{\sqrt 3 } \over 4}{a^2} = {1 \over 2}a\left( {10 + 14 + 6} \right){/tex}
=> {tex}{{\sqrt 3 } \over 4}a = {1 \over 2} \times 30{/tex}
=> {tex}a = {{15 \times 4} \over {\sqrt 3 }} = {{60} \over {\sqrt 3 }}{/tex} cm
Now, Area of equilateral triangle
{tex}{{\sqrt 3 } \over 4}{a^2} = {{\sqrt 3 } \over 4} \times {{60} \over {\sqrt 3 }} \times {{60} \over {\sqrt 3 }}{/tex}
=> {tex}{{\sqrt 3 } \over 4}{a^2} = 300\sqrt 3 {/tex} cm2
Posted by Onkar Yadav 8 years, 5 months ago
- 0 answers
Posted by Onkar Yadav 8 years, 5 months ago
- 1 answers
Rashmi Bajpayee 8 years, 5 months ago
We know that
{tex}{x^3} + {y^3} + {z^3} - 3xyz = \left( {x + y + z} \right)\left( {{x^2} + {y^2} + {z^2} - xy - yz - zx} \right){/tex}
Here, if {tex}x+y+z=0{/tex}, then R.H.S. = 0
Then,
{tex}{x^3} + {y^3} + {z^3} - 3xyz = 0{/tex}
=> {tex}{x^3} + {y^3} + {z^3} = 3xyz {/tex}
So, we can say that if {tex}a+b+c=0{/tex}, then {tex}{a^3} + {b^3} + {c^3} = 3abc{/tex}
Posted by Navraj Singh Johal 8 years, 5 months ago
- 1 answers
Payal Singh 8 years, 5 months ago
Given : x = {tex}2-\sqrt 5{/tex}
Now
{tex}{1\over x} = {1\over 2-\sqrt 5}{/tex}
Rationalize the denominator,
We get
{tex}{1\over x} = {1\over 2-\sqrt 5}\times {2+\sqrt 5\over 2+\sqrt 5}{/tex}
{tex}=> {1\over x} = {2+\sqrt 5\over (2)^2-(\sqrt 5)^2} {/tex}
{tex}=> {1\over x} = {2+\sqrt 5\over 4-5}= -2-\sqrt 5{/tex}
Now,
{tex}x^2+{1\over x^2}= (2-\sqrt 5)^2+(-2-\sqrt5)^2{/tex}
= {tex}4+5-4\sqrt5+4+5+4\sqrt5{/tex}= 18
Posted by Deepanshu Sharma 8 years, 5 months ago
- 0 answers
Posted by Madhav V 8 years, 5 months ago
- 1 answers
Sankhadip Bag 8 years, 5 months ago
1) Yes, y+3 is a factor of f(x)= 2y3 + 3y2 - 7y + 6
2) Since (x-1) is a factor of f(x)= 4x3 + 3x2 - 4x +k , x= 1 is a root of f(x). Therefore,
f(1)= 4*(1)3 + 3*(1)2 - 4(1) +k = 0
or, 4*1 +3*1 - 4 + k = 0
or, 4 + 3 - 4 + k = 0
or, 3 + k = 0
or, k = -3
Therefore, value of k is -3
3) x3 + y3
= (x+y)3 - 3xy(x+y) [ since x3 + y3 = (x + y)3 - 3xy(x+y)]
= (5)3 - 3 * (6) * (5) [ x+y = 5 and xy = 6 given]
= 125 - 90
= 35
Therefore, the value of x3 + y3 is 35
Posted by Ankit Batra 8 years, 5 months ago
- 1 answers
Rashmi Bajpayee 8 years, 5 months ago
{tex}{3 \over 5} + {2 \over {\sqrt 3 }} = {{3\sqrt 3 + 10} \over {5\sqrt 3 }}{/tex}
= {tex}{{3\sqrt 3 + 10} \over {5\sqrt 3 }} \times {{\sqrt 3 } \over {\sqrt 3 }}{/tex}
= {tex}{{9 + 10\sqrt 3 } \over {15}}{/tex}
Posted by Sandeep Sood 8 years, 5 months ago
- 1 answers
Rashmi Bajpayee 8 years, 5 months ago
Given: {tex}x = {{2ab} \over {{b^2} + 1}}{/tex}
{tex}{{\sqrt {a + x} + \sqrt {a - x} } \over {\sqrt {a + x} - \sqrt {a - x} }}{/tex}
= {tex}{{\sqrt {a + x} + \sqrt {a - x} } \over {\sqrt {a + x} - \sqrt {a - x} }} \times {{\sqrt {a + x} + \sqrt {a - x} } \over {\sqrt {a + x} + \sqrt {a - x} }}{/tex}
= {tex}{{{{\left( {\sqrt {a + x} } \right)}^2} + {{\left( {\sqrt {a - x} } \right)}^2} + 2\sqrt {a + x} .\sqrt {a - x} } \over {{{\left( {\sqrt {a + x} } \right)}^2} - {{\left( {\sqrt {a - x} } \right)}^2}}}{/tex}
= {tex}{{a + x + a - x + 2\sqrt {{a^2} - {x^2}} } \over {a + x - a + x}}{/tex}
= {tex}{{2a + 2\sqrt {{a^2} - {x^2}} } \over {2x}}{/tex}
= {tex}{{a + \sqrt {{a^2} - {x^2}} } \over x}{/tex}
= {tex}{{a + \sqrt {{a^2} - {{\left( {{{2ab} \over {{b^2} + 1}}} \right)}^2}} } \over {{{2ab} \over {{b^2} + 1}}}}{/tex}
= {tex}a + \sqrt {{a^2} - {{4{a^2}{b^2}} \over {{{\left( {{b^2} + 1} \right)}^2}}}} \times {{{b^2} + 1} \over {2ab}}{/tex}
= {tex}a + a\sqrt {{{{{\left( {{b^2} + 1} \right)}^2} - 4{b^2}} \over {{{\left( {{b^2} + 1} \right)}^2}}}} \times {{{b^2} + 1} \over {2ab}}{/tex}
= {tex}a\left[ {1 + {1 \over {{b^2} + 1}}\sqrt {{b^4} + 1 + 2{b^2} - 4{b^2}} } \right] \times {{{b^2} + 1} \over {2ab}}{/tex}
= {tex}{{{b^2} + 1 + \sqrt {{b^4} + 1 - 2{b^2}} } \over {{b^2} + 1}} \times {{{b^2} + 1} \over {2b}}{/tex}
= {tex}{{{b^2} + 1 + \sqrt {{{\left( {{b^2} - 1} \right)}^2}} } \over {2b}}{/tex}
= {tex}{{{b^2} + 1 + {b^2} - 1} \over {2b}}{/tex}
= {tex}{{2{b^2}} \over {2b}}{/tex}
= {tex}b{/tex}
Posted by Sandeep Sood 8 years, 5 months ago
- 1 answers
Payal Singh 8 years, 5 months ago
{tex}{(0.04)^{2}\over 0.008\times (0.2)^6}=(0.2)^k{/tex}
{tex}=> {((0.2)^2)^{2}\over( 0.2)^3\times (0.2)^6}=(0.2)^k{/tex}
{tex}=> {(0.2)^4\over( 0.2)^9}=(0.2)^k{/tex}
{tex}=> (0.2)^{4-9}=(0.2)^k{/tex}
{tex}=> (0.2)^{-5}=(0.2)^k{/tex}
On comparing both sides, we get
k = -5
Posted by Santosh Jha 8 years, 6 months ago
- 1 answers
Rashmi Bajpayee 8 years, 6 months ago
Perimeter of Isosceles triangle = 30 cm
Each of equal side of given triangle = 12 cm
Let the third side be x cm
=> 12 + 12 + x = 30
=> x = 30 - 24 = 6 cm
Now, Semi-perimeter (s) = {tex}{{30} \over 2} = 15{/tex} cm
Using Heron's formula,
Area of given triangle = {tex}\sqrt {s\left( {s - a} \right)\left( {s - b} \right)\left( {s - c} \right)} {/tex}
= {tex}\sqrt {15\left( {15 - 12} \right)\left( {15 - 12} \right)\left( {15 - 6} \right)} {/tex}
= {tex}\sqrt {15 \times 3 \times 3 \times 9} {/tex}
= {tex}9\sqrt {15} {/tex} sq. cm
= 9 x 3.87
= 34.83 sq. cm
Posted by Pradhyumn Soni 8 years, 6 months ago
- 2 answers
Rashmi Bajpayee 8 years, 6 months ago
{tex}p\left( x \right) = {x^3} - 10{x^2} - 53x - 42{/tex}
Putting x = -1 in p(x),
{tex}p\left( { - 1} \right) = {\left( { - 1} \right)^3} - 10{\left( { - 1} \right)^2} - 53\left( { - 1} \right) - 42{/tex} = {tex} - 1 - 10 + 53 - 42 = 0{/tex}
Since {tex}p\left( { - 1} \right) = 0{/tex}, therefore, (x + 1) is a factor of p(x)
Now, on dividing p(x) by (x + 1), we get the quotient {tex}{x^2} - 11x - 42{/tex}
Therefore, {tex}p\left( x \right) = {x^3} - 10{x^2} - 53x - 42{/tex}
{tex}\Rightarrow{/tex} {tex}p\left( x \right) = \left( {x + 1} \right)\left[ {{x^2} - 11x - 42} \right]{/tex}
{tex}\Rightarrow{/tex} {tex}p\left( x \right) = \left( {x + 1} \right)\left[ {{x^2} - 14x + 3x - 42} \right]{/tex}
{tex}\Rightarrow{/tex} {tex}p\left( x \right) = \left( {x + 1} \right)\left[ {x\left( {x - 14} \right) + 3\left( {x - 14} \right)} \right]{/tex}
{tex}\Rightarrow{/tex} {tex}p\left( x \right) = \left( {x + 1} \right)\left( {x + 3} \right)\left( {x - 14} \right){/tex}
Rashmi Bajpayee 8 years, 6 months ago
1) x<font size="2">4</font>+4x<font size="2">2</font>+16
= {tex}{x^4} + 16 + 4{x^2}{/tex}
= {tex}{\left( {{x^2}} \right)^2} + {\left( 4 \right)^2} + 2 \times {x^2} \times 4 - 2 \times {x^2} \times 4 + 4{x^2}{/tex}
= {tex}{\left( {{x^2} + 4} \right)^2} - 8{x^2} + 4{x^2}{/tex}
= {tex}{\left( {{x^2} + 4} \right)^2} - 4{x^2}{/tex}
= {tex}{\left( {{x^2} + 4} \right)^2} - {\left( {2x} \right)^2}{/tex}
= {tex}\left( {{x^2} + 4 + 2x} \right)\left( {{x^2} + 4 - 2x} \right){/tex} [Using identity {tex}{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right){/tex}]
= {tex}\left( {{x^2} + 2x + 4} \right)\left( {{x^2} - 2x + 4} \right){/tex}
Posted by Pradhyumn Soni 8 years, 6 months ago
- 3 answers
Rashmi Bajpayee 8 years, 6 months ago
1) 2√2x<font size="2">3</font>+5√2x<font size="2">2</font>-7√2
{tex}p\left( x \right) = 2\surd 2{x^3} + 5\surd 2{x^2} - 7\surd 2{/tex}
Putting x = 1, in p(x),
{tex}p\left( 1 \right) = 2\surd 2{\left( 1 \right)^3} + 5\surd 2{\left( 1 \right)^2} - 7\surd 2{/tex}
{tex}\Rightarrow{/tex} {tex}p\left( 1 \right) = 2\surd 2 + 5\surd 2 - 7\surd 2{/tex} = {tex}7\surd 2 - 7\surd 2 = 0{/tex}
Since p(1) = 0, therefore, (x - 1) is a factor of p(x)
Dividing p(x) by (x -1), we get the quotient {tex}2\sqrt 2 {x^2} + 7\sqrt 2 {/tex}
Therefore,
{tex}p\left( x \right) = 2\surd 2{x^3} + 5\surd 2{x^2} - 7\surd 2{/tex}
{tex}\Rightarrow{/tex} {tex}p\left( x \right) = \left( {x - 1} \right)\left[ {2\sqrt 2 {x^2} + 7\sqrt 2 } \right]{/tex}
{tex}\Rightarrow{/tex} {tex}p\left( x \right) = \left( {x - 1} \right)\left[ {\sqrt 2 \left( {2{x^2} + 7} \right)} \right]{/tex}
{tex}\Rightarrow{/tex} {tex}p\left( x \right) = \sqrt 2 \left( {x - 1} \right)\left( {2{x^2} + 7} \right){/tex}
Rashmi Bajpayee 8 years, 6 months ago
3) {tex}{p^4} - 81{q^4}{/tex}
= {tex}{\left( {{p^2}} \right)^2} - {\left( {9{q^2}} \right)^2}{/tex} [Using identity {tex}{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right){/tex}]
= {tex}\left[ {{p^2} + 9{q^2}} \right]\left[ {{p^2} - 9{q^2}} \right]{/tex}
= {tex}\left[ {{p^2} + 9{q^2}} \right]\left[ {{{\left( p \right)}^2} - {{\left( {3q} \right)}^2}} \right]{/tex}
= {tex}\left[ {{p^2} + 9{q^2}} \right]\left[ {\left( {p + 3q} \right)\left( {p - 3q} \right)} \right]{/tex} [Using identity {tex}{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right){/tex}]
= {tex}\left( {{p^2} + 9{q^2}} \right)\left( {p + 3q} \right)\left( {p - 3q} \right){/tex}
Rashmi Bajpayee 8 years, 6 months ago
2) p(x) = x<font size="2">3</font>+13x<font size="2">2</font>+32x+20
putting x = -1 in given polynomial,
p(-1) = (-1)<font size="2">3</font>+ 13(-1)<font size="2">2</font>+ 32(-1) +20
= -1 + 13 - 32 + 20 = 0
Since p(-1) = 0, therefore (x + 1) is a factor of p(x).
Now, on dividing p(x) by (x + 1), we get the quotient x2 + 12x + 20
{tex}p\left( x \right) = {x^3} + 13{x^2} + 32x + 20{/tex}
{tex}\Rightarrow{/tex} {tex}p\left( x \right) = \left( {x + 1} \right)\left[ {{x^2} + 12x + 20} \right]{/tex}
{tex}\Rightarrow{/tex} {tex}p\left( x \right) = \left( {x + 1} \right)\left[ {{x^2} + 10x + 2x + 20} \right]{/tex}
{tex}\Rightarrow{/tex} {tex}p\left( x \right) = \left( {x + 1} \right)\left[ {x\left( {x + 10} \right) + 2\left( {x + 10} \right)} \right]{/tex}
{tex}\Rightarrow{/tex} {tex}p\left( x \right) = \left( {x + 1} \right)\left( {x + 2} \right)\left( {x + 10} \right){/tex}
Posted by Sudhanshu Dash 8 years, 6 months ago
- 1 answers
Posted by Sree Devi 8 years, 6 months ago
- 0 answers
Posted by Mamoni Saha 8 years, 6 months ago
- 1 answers
Rashmi Bajpayee 8 years, 6 months ago
{tex}\sqrt 2 ,\root 3 \of 4 ,\root 4 \of 3 {/tex}
= {tex}{2^{{1 \over 2}}},{4^{{1 \over 3}}},{3^{{1 \over 4}}}{/tex}
= {tex}{2^{{6 \over {12}}}},{4^{{4 \over {12}}}},{3^{{3 \over {12}}}}{/tex} [Making all the powers as like terms]
= {tex}\root {12} \of {{2^6}} ,\root {12} \of {{4^4}} ,\root {12} \of {{3^3}} {/tex}
= {tex}\root {12} \of {64} ,\root {12} \of {256} ,\root {12} \of {27} {/tex}
Here {tex}\root {12} \of {256} {/tex} is greater.
Therefore, {tex}\root 3 \of 4 {/tex} is greater.
Posted by Arpan Nema 8 years, 6 months ago
- 1 answers
Payal Singh 8 years, 6 months ago
p(x) = k2x3-kx2+3kx-k
As x-3 is factor of p(x) so x= 3 is zero of this polynomial.
Using remainder theorem
p(3)=0
=> k2(3)3-k(3)2+3k(3)-k=0
=> 27k2-9k+9k-k=0
=> 27k2-k =0
=> k(27k-1)=0
=> k = 0 or 27k-1=0
=> k = 0 or {tex}1\over 27{/tex}
Posted by Ashu Shrivas 8 years, 6 months ago
- 1 answers
Rashmi Bajpayee 8 years, 6 months ago
We know that {tex}{\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2} + 2ab + 2bc + 2ca{/tex}
{tex}\Rightarrow{/tex} {tex}{a^2} + {b^2} + {c^2} = {\left( {a + b + c} \right)^2} - 2ab - 2bc - 2ca{/tex}
{tex}\Rightarrow{/tex} {tex}{a^2} + {b^2} + {c^2} = {\left( {a + b + c} \right)^2} - 2\left( {ab + bc + ca} \right){/tex}
Putting the given values of a + b + c and ab + bc + ca, we get
{tex}\Rightarrow{/tex} {tex}{a^2} + {b^2} + {c^2} = {\left( 9 \right)^2} - 2\left( {26} \right){/tex}
{tex}\Rightarrow{/tex} {tex}{a^2} + {b^2} + {c^2} = 81 - 52 = 29{/tex}
Posted by Prabhati Acharya 8 years, 6 months ago
- 1 answers
Payal Singh 8 years, 6 months ago
Given : {tex}x^2+{1\over x^2}= 27{/tex}
We know,
{tex}(a+b)^2=a^2+b^2+2ab{/tex}
Put a = x and b={tex}{1\over x} {/tex}
We get
{tex}=> (x+{1\over x})^2 = x^2+{1\over x^2}+2\times x\times {1\over x}{/tex}
{tex}=> (x+{1\over x})^2 = 27+2=29{/tex}
{tex}=> x+{1\over x} =\pm \sqrt{29}{/tex}
Posted by Shaaz Fathima 8 years, 6 months ago
- 1 answers
Poulami Dasgupta 8 years, 5 months ago
{tex}{1\over2}\sqrt{486}-{\sqrt{27}\over2}{/tex}
{tex}{1\over2}\sqrt{2\times3\times3\times3\times3\times3}{/tex}—{tex}\sqrt{3\times3\times3}\over2{/tex}
{tex}{1\over2}\times3\times3\sqrt{6}{/tex}—{tex}3\sqrt{3}\over2{/tex}
{tex}{9\sqrt{6}\over2}—{3\sqrt{3}\over2}{/tex}
{tex}9\sqrt{6}—3\sqrt{3}\over2{/tex}
{tex}3(3\sqrt{6}—\sqrt{3})\over2{/tex}
Posted by Sandeep Sood 8 years, 6 months ago
- 1 answers
Payal Singh 8 years, 6 months ago
Given : {tex}x^2+{1\over x^2} = 7{/tex}
To find : {tex}2x^2-{2\over x^2}{/tex}
Solution :
We know,
{tex}(a+b)^2 = a^2+b^2+2ab{/tex} ...(1)
Put a = x and b = {tex}1\over x{/tex}
{tex}(x+{1\over x})^2= x^2+{1\over x^2}+2{/tex}
=> {tex}(x+{1\over x})^2= 7+2=9{/tex}
=> {tex}x+{1\over x}= 3{/tex}...... (2)
Also
{tex}(x-{1\over x})^2= x^2+{1\over x^2}-2{/tex}
{tex}=> (x-{1\over x})^2= 7-2{/tex}= 5
{tex}=> x-{1\over x}= \sqrt 5{/tex} ... (3)
Multiply (2) and (3)
{tex}x^2-{1\over x^2}= 3\sqrt 5{/tex}
Multiply both side by 2
{tex}2x^2-{2\over x^2}= 6\sqrt 5{/tex}

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sahdev Sharma 8 years, 5 months ago
(i) {tex}2^{2x}-2^{x+3}+2^4=0{/tex}
{tex}=> (2^x)^{2}-2^{x}2^{3}+16=0{/tex}
Put 2x= y
{tex}=> y^2-8y+16=0{/tex}
{tex}=> y^2-4y-4y+16=0{/tex}
{tex}=> y(y-4)-4(y-4)=0{/tex}
=> (y-4)(y-4) = 0
=> y = 4
{tex}=> 2^x= 4{/tex}
=> {tex}2^x= 2^2{/tex}
So value of x = 2
1Thank You