No products in the cart.

Solve the following quadratic equation by …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

Solve the following quadratic equation by factorization method: 9x*x-6b*bx-(a*a*a*a-b*b*b*b)
  • 1 answers

Sia ? 6 years, 6 months ago

We have,

9x2 - 6b2x - (a4 - b4) = 0
Here, Constant term = a4 - b4 = (a2 - b2)(a+ b2)
Also, the coefficient of middle term is - 6b2 = [3(a2 + b2) - 3(a- b2)]
Now using the above two values in given equation, 9x2 - 6b2x - (a4 - b4) = 0
{tex}{/tex} we have, 9x2  - [3(a2 + b2) - 3(a2 - b2)]x - (a2 - b2)(a+ b2) = 0
{tex}\Rightarrow{/tex} 9x2 - 3(a+ b2)x + 3(a2 - b2)x - (a2 - b2)(a2 + b2) = 0
{tex}\Rightarrow{/tex} 3x[3x - (a+ b2)] + (a2 - b2)[3x - (a2 + b2)] = 0
{tex}\Rightarrow{/tex} [3x + (a- b2)][3x - (a2 + b2)] = 0
{tex}\Rightarrow{/tex}either [3x + (a - b2)] = 0 or, [3x - (a2 + b2)] = 0
{tex}\Rightarrow{/tex} 3x = -(a2 - b2) or 3x = a2 + b2
{tex}\Rightarrow x = -(\frac{{{a^2} - {b^2}}}{3}){/tex} or {tex}x = \frac{{{a^2} + {b^2}}}{3}{/tex}
{tex}\Rightarrow x = \frac{{{b^2} - {a^2}}}{3}{/tex} or {tex}x = \frac{{{a^2} + {b^2}}}{3}{/tex}

Hence, the roots of given quadratic equation are {tex}\frac{{b^2 - a^2}}{3}{/tex}and {tex}\frac{{a^2 + b^2}}{3}{/tex}

https://examin8.com Test

Related Questions

Prove that root 8 is an irration number
  • 2 answers
(A + B )²
  • 1 answers
Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers
X-y=5
  • 1 answers
Venu Gopal has twice
  • 0 answers
sin60° cos 30°+ cos60° sin 30°
  • 2 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App