Solve the following quadratic equation by …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Simran Gupta 6 years, 6 months ago
- 1 answers
Related Questions
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Kanika . 1 month ago
- 1 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 6 months ago
We have,
9x2 - 6b2x - (a4 - b4) = 0
Here, Constant term = a4 - b4 = (a2 - b2)(a2 + b2)
Also, the coefficient of middle term is - 6b2 = [3(a2 + b2) - 3(a2 - b2)]
Now using the above two values in given equation, 9x2 - 6b2x - (a4 - b4) = 0
{tex}{/tex} we have, 9x2 - [3(a2 + b2) - 3(a2 - b2)]x - (a2 - b2)(a2 + b2) = 0
{tex}\Rightarrow{/tex} 9x2 - 3(a2 + b2)x + 3(a2 - b2)x - (a2 - b2)(a2 + b2) = 0
{tex}\Rightarrow{/tex} 3x[3x - (a2 + b2)] + (a2 - b2)[3x - (a2 + b2)] = 0
{tex}\Rightarrow{/tex} [3x + (a2 - b2)][3x - (a2 + b2)] = 0
{tex}\Rightarrow{/tex}either [3x + (a2 - b2)] = 0 or, [3x - (a2 + b2)] = 0
{tex}\Rightarrow{/tex} 3x = -(a2 - b2) or 3x = a2 + b2
{tex}\Rightarrow x = -(\frac{{{a^2} - {b^2}}}{3}){/tex} or {tex}x = \frac{{{a^2} + {b^2}}}{3}{/tex}
{tex}\Rightarrow x = \frac{{{b^2} - {a^2}}}{3}{/tex} or {tex}x = \frac{{{a^2} + {b^2}}}{3}{/tex}
Hence, the roots of given quadratic equation are {tex}\frac{{b^2 - a^2}}{3}{/tex}and {tex}\frac{{a^2 + b^2}}{3}{/tex}
0Thank You