XY an X'Y' ARE 2 parallel …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Hari Anand 6 months ago
- 0 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 1 week ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 1 week ago
- 1 answers
Posted by Kanika . 4 weeks ago
- 1 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 6 months ago
Given: In figure, XY and X'Y' are two parallel tangents to a circle with centre O and another tangent AB with point of contact C intersecting XY at A and X'Y' at B.

To Prove : {tex}\angle{/tex}AOB = 90o
Construction: Join OC
Proof: {tex}\angle{/tex}OPA = 90o ........ (i)
{tex}\angle{/tex}OCA = 90o........ (ii)
[Tangent at any point of a circle is ⊥ to the radius through the point of contact]
In right angled triangles OPA and OCA,
OA = OA [Common]
AP = AC [Tangents from an external
point to a circle are equal]
{tex}\therefore{/tex} {tex}\triangle{/tex}OPA {tex}\cong{/tex} {tex}\triangle{/tex}OCA [RHS congruence criterion]
{tex}\therefore{/tex} {tex}\angle{/tex}OAP = {tex}\angle{/tex}OAC [By C.P.C.T.]
{tex}\Rightarrow{/tex} {tex}\angle{/tex}OAC = {tex}\frac12{/tex}{tex}\angle{/tex}PAB ....... (iii)
Similarly, {tex}\angle{/tex}OBQ = {tex}\angle{/tex}OBC
{tex}\Rightarrow{/tex} {tex}\angle{/tex}OBC = {tex}\frac12{/tex}{tex}\angle{/tex}QBA .......... (iv)
{tex}\because{/tex} XY ∥ X'Y' and a transversal AB intersects them.
{tex}\therefore{/tex} {tex}\angle{/tex}PAB + {tex}\angle{/tex}QBA = 180o [Sum of the consecutive interior angles on the same side
of the transversal is 180o
{tex}\Rightarrow{/tex} {tex}\frac12{/tex}{tex}\angle{/tex}PAB + {tex}\frac12{/tex}{tex}\angle{/tex}QBA = {tex}\frac12{/tex}{tex}\times{/tex} 180o.......... (v)
{tex}\Rightarrow{/tex} {tex}\angle{/tex}OAC + {tex}\angle{/tex}OBC = 90o [From eq. (iii) & (iv)]
In {tex}\triangle{/tex}AOB,
{tex}\angle{/tex}OAC + {tex}\angle{/tex}OBC + {tex}\angle{/tex}AOB = 180o [Angel sum property of a triangle]
{tex}\Rightarrow{/tex} 90o + {tex}\angle{/tex}AOB = 180o [From eq. (v)]
0Thank You