Two tangent TP and TQ are …
CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Lakshay Kumar 1 week, 1 day ago
- 0 answers
Posted by Kanika . 2 months ago
- 1 answers
Posted by Parinith Gowda Ms 3 months, 4 weeks ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 4 weeks ago
- 1 answers
Posted by Vanshika Bhatnagar 3 months, 4 weeks ago
- 2 answers
Posted by Hari Anand 2 weeks, 1 day ago
- 0 answers
myCBSEguide
Trusted by 1 Crore+ Students
Test Generator
Create papers online. It's FREE.
CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
Preeti Dabral 1 year, 8 months ago
Given A circle with centre O and an external point T and two tangents TP and TQ to the circle, where P, Q are the points of contact.
To Prove: {tex}\angle{/tex}PTQ = 2{tex}\angle{/tex}OPQ
Proof: Let {tex}\angle{/tex}PTQ = {tex}\theta{/tex}
Since TP, TQ are tangents drawn from point T to the circle.
TP = TQ
{tex}\therefore{/tex} TPQ is an isoscles triangle
{tex}\therefore{/tex} {tex}\angle{/tex}TPQ = {tex}\angle{/tex}TQP = {tex}\frac12{/tex} (180o - {tex}\theta{/tex}) = 90o - {tex}\fracθ2{/tex}
Since, TP is a tangent to the circle at point of contact P
{tex}\therefore{/tex} {tex}\angle{/tex}OPT = 90o
{tex}\therefore{/tex} {tex}\angle{/tex}OPQ = {tex}\angle{/tex}OPT - {tex}\angle{/tex}TPQ = 90o - (90o - {tex}\frac12{/tex} {tex}\theta{/tex}) = {tex}\fracθ2{/tex}= {tex}\frac12{/tex}{tex}\angle{/tex}PTQ
Thus, {tex}\angle{/tex}PTQ = 2{tex}\angle{/tex}OPQ
0Thank You