No products in the cart.

From a solid cylinder of hieght …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

From a solid cylinder of hieght 14 cm and base the diameter 7 cm . Two equal conical holes each of radius 2.1 cm and height 4 cm are cut out Find the volume and surface area of the remaining solid
  • 1 answers

Preeti Dabral 1 year, 9 months ago

Height of the cylinder (h) = 14 cm,
Base diameter = 7 cm
{tex}\Rightarrow{/tex} Radius of the base of the cylinder (r) = 3.5 cm
Volume of the cylinder = {tex}\pi r ^ { 2 } h{/tex}
{tex}\frac { 22 } { 7 } \times 3.5 \times 3.5 \times 14{/tex}
= 22 {tex}\times{/tex}3.5 {tex}\times{/tex}3.5{tex}\times{/tex}14
= 539 cm3
Radius of the conical holes (r1) = 2.1 cm,
Height of the conical holes (h1) = 4 cm,
volume of the conical hole {tex}= \frac { 1 } { 3 } \pi r _ { 1 } ^ { 2 } h _ { 1 }{/tex}
{tex}= \frac { 1 } { 3 } \times \frac { 22 } { 7 } \times 2.1 \times 2.1 \times 4{/tex}
= 18.48 cm3
Volume of the two conical hole = 2 {tex}\times{/tex}18.48
= 36.96 cm3
Volume of the remaining solid = Volume of the cylinder - Volume of two conical hole
= 539 - 36.96
= 502.04 cm3

http://mycbseguide.com/examin8/

Related Questions

(A + B )²
  • 1 answers
Venu Gopal has twice
  • 0 answers
Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers
sin60° cos 30°+ cos60° sin 30°
  • 2 answers
X-y=5
  • 1 answers
Water
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App