No products in the cart.

To prove: AB+ BC+CD+DA< 2 (AC+BD)

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

To prove: AB+ BC+CD+DA< 2 (AC+BD)
  • 1 answers

Preeti Dabral 1 year, 8 months ago

Since, the sum of lengths of any two sides in a triangle should be greater than the length of third side

Therefore, 

In Δ AOB, AB < OA + OB ……….(i) 

In Δ BOC, BC < OB + OC ……….(ii) 

In Δ COD, CD < OC + OD ……….(iii) 

In Δ AOD, DA < OD + OA ……….(iv) 

⇒ AB + BC + CD + DA < 2OA + 2OB + 2OC + 2OD 

⇒ AB + BC + CD + DA < 2[(AO + OC) + (DO + OB)] 

⇒ AB + BC + CD + DA < 2(AC + BD) 

Hence, it is proved.

http://mycbseguide.com/examin8/

Related Questions

Find the mising values
  • 0 answers
What is lhs
  • 0 answers
The backers of milk contain 4 1/2 litres 5 1/4 litres 3 3/4
  • 0 answers
124+659
  • 2 answers
3/4 of 10/29 multiplication
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App