If sum of the sequence 1,6,11,16,....,x …
CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Sarika Maurya 1 year, 10 months ago
- 1 answers
Related Questions
Posted by Parinith Gowda Ms 4 months ago
- 0 answers
Posted by Kanika . 2 months ago
- 1 answers
Posted by Hari Anand 2 weeks, 2 days ago
- 0 answers
Posted by Lakshay Kumar 1 week, 2 days ago
- 0 answers
Posted by Parinith Gowda Ms 4 months ago
- 1 answers
Posted by Vanshika Bhatnagar 4 months ago
- 2 answers
myCBSEguide
Trusted by 1 Crore+ Students
Test Generator
Create papers online. It's FREE.
CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
Preeti Dabral 1 year, 10 months ago
Given series is
{tex} 1+6+11+16+\ldots . .+x=148 Here, a=1, d=6-1=11-6=16-11=5 and \mathrm{S}_{\mathrm{n}}=148 \begin{aligned} & \because \mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}] \\ & \therefore 148=\frac{\mathrm{n}}{2}[2 \times 1+(\mathrm{n}-1) 5] \\ & \Rightarrow 296=2 \mathrm{n}+5 \mathrm{n}^2-5 \mathrm{n} \\ & \Rightarrow 296=5 \mathrm{n}^2-3 \mathrm{n} \\ & \Rightarrow 5 \mathrm{n}^2-3 \mathrm{n}-296=0 \\ & \Rightarrow(\mathrm{n}-8)(5 \mathrm{n}+37)=0 \\ & \Rightarrow \mathrm{n}=8, \mathrm{n}=\frac{-37}{5} \end{aligned} {/tex}
{tex}\begin{aligned} & \therefore \mathrm{n}=8 \\ & (\because \mathrm{n} \text { cannot be negative }) \\ & \text { Now, } \mathrm{T}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d} \\ & \mathrm{x}=1+(8-1) \times 5 \\ & \Rightarrow \mathrm{x}=1+35 \Rightarrow \mathrm{x}=36 . \end{aligned}{/tex}
1Thank You