In the given figure, ÐPQR = …
CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Khushee Bhogayta 1 year, 11 months ago
- 1 answers
Related Questions
Posted by Akhilesh Patidar 3 months, 4 weeks ago
- 0 answers
Posted by Gnani Yogi 3 months, 4 weeks ago
- 0 answers
Posted by Sheikh Alfaz 1 month, 1 week ago
- 0 answers
Posted by Savitha Savitha 3 months, 4 weeks ago
- 0 answers
Posted by Alvin Thomas 3 months, 4 weeks ago
- 0 answers
Posted by T Prudhvi 1 month, 1 week ago
- 0 answers
myCBSEguide
Trusted by 1 Crore+ Students
Test Generator
Create papers online. It's FREE.
CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
Preeti Dabral 1 year, 11 months ago
Here, ∠PQR=100∘
Take a point S in the major arc. Join PS and RS.
{tex}\because{/tex} PQRS is a cyclic quadrilateral.
{tex}\therefore \angle \mathrm { PQR } + \angle \mathrm { PSQ } = 180 ^ { \circ }{/tex}
|The sum of either pair of opposite angles of a cyclic quadrilateral is 180o
{tex}\Rightarrow 100 ^ { \circ } + \angle P S R = 180 ^ { \circ }{/tex}
{tex}\Rightarrow \angle P S R = 180 ^ { \circ } - 100 ^ { \circ }{/tex}
{tex}\Rightarrow \angle P S R = 80 ^ { \circ }{/tex} ......... (1)
Now, {tex}\angle \mathrm { POR } = 2 \angle \mathrm { PSR }{/tex}
|The angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle
{tex}= 2 \times 80 ^ { \circ } = 160 ^ { \circ }{/tex} ........ (2) |Using (1)
In {tex}\triangle O P R{/tex}
{tex}\because O P = O R{/tex} |Radii of a circle
{tex}\therefore \angle \mathrm { OPR } = \angle \mathrm { ORP }{/tex} ....... (3)
|Angles opposite to equal sides of a triangle are equal
In {tex}\triangle O P R{/tex}
{tex}\angle O P R + \angle O R P + \angle P O R = 180 ^ { \circ }{/tex} | Sum of all the angles of a triangle is 180o
{tex}\Rightarrow \angle \mathrm { OPR } + \angle \mathrm { OPR } + 160 ^ { \circ } = 180 ^ { \circ }{/tex} |Using (2) and (1)
{tex}\Rightarrow 2 \angle O P R + 160 ^ { \circ } = 180 ^ { \circ }{/tex}
{tex}\Rightarrow 2 \angle O P R = 180 ^ { \circ } - 160 ^ { \circ } = 20 ^ { \circ }{/tex}
{tex}\Rightarrow \angle \mathrm { OPR } = 10 ^ { \circ }{/tex}
0Thank You