No products in the cart.

Find a quadratic polynomial whose zeroes …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

Find a quadratic polynomial whose zeroes are reciprocals of the zeroes of the polynomial f(x)=ax^2+bx+c
  • 3 answers

Preeti Dabral 1 year, 11 months ago

{tex}\text { Let } \alpha \text { and } \beta \text { are the zeroes of the polynomial } f(x)=a x^2+b x+c \text {. }{/tex}

{tex}\therefore \quad(\alpha+\beta)=\frac{-\mathbf{b}}{\mathbf{a}} and \alpha \beta=\frac{\mathbf{c}}{\mathbf{a}} According to the question, \frac{1}{\alpha} and \frac{1}{\beta} are the zeroes of the required quadratic polynomial{/tex}

Sum of zeroes of required polynomial

{tex} \begin{aligned} \mathbf{S}^{\prime} & =\frac{1}{\alpha}+\frac{1}{\beta} \\ & =\frac{\alpha+\beta}{\alpha \beta} \\ & =\frac{-\mathbf{b}}{\mathbf{c}} \end{aligned} [From equation (i) and (ii)] and product of zeroes of required polynomial =\frac{1}{\alpha} \times \frac{1}{\beta}. P^{\prime}=\frac{1}{\alpha \beta} =\frac{a}{c} [From equation (ii)]{/tex}

Equation of the required polynomial.

{tex} =\mathbf{k}\left(\mathbf{x}^2-\mathbf{S}^{\prime} \mathbf{x}+\mathbf{p}^{\prime}\right) where $k$ is any non-zero constant =k\left(x^2-\left(\frac{-b}{c}\right) x+\frac{a}{c}\right) [From equation (iii) and (iv)] =k\left(x^2+\frac{b}{c} x+\frac{a}{c}\right) {/tex}

 

Rdm 😈 1 year, 10 months ago

cx^2 - bx + a

Ankit Class 1 year, 11 months ago

Cx^2+bx+a
http://mycbseguide.com/examin8/

Related Questions

Water
  • 0 answers
(A + B )²
  • 1 answers
Venu Gopal has twice
  • 0 answers
sin60° cos 30°+ cos60° sin 30°
  • 2 answers
X-y=5
  • 1 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App