No products in the cart.

In the given figure, abcd is …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

In the given figure, abcd is a square and angle pqd =90 degree .if pb =qc=Dr, prove that 1)qb =rc (2)pq =qr (3)qpr =45 degree .
  • 2 answers

Preeti Dabral 2 years ago

Given: ABCD is a square, where {tex}\angle{/tex}PQR = 90and PB = QC = DR
To prove: (i) QB = RC (ii) PQ = QR
(iii) {tex}\angle{/tex}QPR = 45o
Proof:

  1. Here,
    BC = CD … (Sides of square)
    CQ = DR … (Given)
    BC = BQ + CQ
    {tex}\therefore{/tex} CQ = BC − BQ
    {tex}\therefore{/tex} DR = BC – BQ .......(1)
    Also,
    CD = RC + DR
    {tex}\therefore{/tex} DR = CD - RC = BC - RC ........(2)
    From (1) and (2), we have,
    BC - BQ = BC - RC
    {tex}\therefore{/tex} BQ = RC
  2. Now in {tex}\triangle{/tex}RCQ and {tex}\triangle{/tex}QBP
    we have, PB = QC … (Given)
    BQ = RC … [from (i)]
    {tex}\angle{/tex}RCQ = {tex}\angle{/tex}QBP … 90o each
    Hence by SAS(Side-Angle-Side) congruence rule,
    {tex}\triangle{/tex}RCQ {tex}\cong{/tex} {tex}\triangle{/tex}QBP
    {tex}\therefore{/tex} QR = PQ … (by cpct)
  3. {tex}\triangle{/tex}RCQ {tex}\cong{/tex} {tex}\triangle{/tex}QBP and QR = PQ … [from (2)]
    {tex}\therefore{/tex} In {tex}\triangle{/tex}RPQ,
    {tex}\angle{/tex}QPR = {tex}\angle{/tex}QRP ={tex}\frac{1}{2}{/tex}(180o - 90o) = {tex}\frac{90}{2}{/tex}= 45o
    {tex}\therefore{/tex} {tex}\angle{/tex}QPR = 45

Nilanjna Singh 1 year, 11 months ago

Thanks
http://mycbseguide.com/examin8/

Related Questions

What is 38747484±393884747
  • 0 answers
X³-12x²+39x-28
  • 0 answers
3√2×4√2×12√32
  • 0 answers
Ch-1 introduction
  • 0 answers
2x+5y
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App