No products in the cart.

3 equal masses of m kg …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

3 equal masses of m kg are kept at the vertices of an equilateral triangle find the force acting on mass 2m kept at the centroid of triangle if side of triangle is 1 m
  • 1 answers

Preeti Dabral 2 years ago

  1. As AO = BO = CO = 1 m, hence we have
    {tex}\left| \overrightarrow { F _ { A } } \right| = \left| \overrightarrow { F _ { B } } \right| = \left| \overrightarrow { F _ { C } } \right| = \frac { G M \cdot 2 M } { ( 1 ) ^ { 2 } } = 2 G M ^ { 2 }{/tex}
    If we consider direction parallel to BC as x-axis and perpendicular direction as y-axis, then as shown in figure, we have
    {tex}\vec { F } _ { A } = 2 G M ^ { 2 } \hat { j }{/tex}
    {tex}\vec { F } _ { B } = \left( - 2 G M ^ { 2 } \cos 30 ^ { \circ } \hat { i } - 2 G M ^ { 2 } \sin 30 ^ { \circ } \hat { j } \right){/tex}
    and {tex}\overrightarrow { F _ { C } } = \left( 2 G M ^ { 2 } \cos 30 ^ { \circ } \hat { i } - 2 G M ^ { 2 } \sin 30 ^ { \circ } \hat { j } \right){/tex}
    Therefore, the net force on mass 2M placed at the centroid O is given by,
    {tex}\vec { F } = \vec { F } _ { A } + \vec { F } _ { B } + \vec { F } _ { C } {/tex} 
    {tex}= 2 G M ^ { 2 } \left[ j + \left( - \frac { \sqrt { 3 } } { 2 } \hat { i } - \frac { 1 } { 2 } \hat { i } \right) + \left( \frac { \sqrt { 3 } } { 2 } \hat { i } - \frac { 1 } { 2 } \hat { j } \right) \right]{/tex}
    {tex}=0{/tex}
http://mycbseguide.com/examin8/

Related Questions

1dyne convert to S.I unit
  • 1 answers
Ch 1 question no. 14
  • 0 answers
2d+2d =
  • 1 answers
√kq,qpower2 R2
  • 0 answers
Project report
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App