No products in the cart.

X log 2x

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

X log 2x
  • 1 answers

Preeti Dabral 1 year, 11 months ago

{tex}\int {x\log 2xdx} {/tex}

{tex} = \int {\left( {\log 2x} \right)xdx} {/tex}

{tex}= \left( {\log 2x} \right)\int {xdx - \int {\left[ {\frac{d}{{dx}}\log 2x\int {xdx} } \right]dx} } {/tex}

[Applying product rule]

{tex}= \left( {\log 2x} \right)\frac{{{x^2}}}{2} - \int {\frac{1}{{2x}}.2.\frac{{{x^2}}}{2}dx} {/tex}

{tex} = \frac{1}{2}{x^2}\log 2x - \frac{1}{2}\int {xdx} {/tex}

{tex}= \frac{1}{2}{x^2}\log 2x - \frac{1}{2}\frac{{{x^2}}}{2} + c{/tex}

{tex}= \frac{{{x^2}}}{2}\log 2x - \frac{{{x^2}}}{4} + c{/tex}

http://mycbseguide.com/examin8/

Related Questions

Y=sin√ax^2+√bx+√c
  • 0 answers
Three friends Ravi Raju
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App