No products in the cart.

Derive en expenssion of time period …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

Derive en expenssion of time period of simple pendulam
  • 1 answers

Preeti Dabral 1 year, 10 months ago

Time period T= time required to complete one oscillation.

At equilibrium T0​=mg.

For small displacement θ

Restoring force =−mgsinθ

for small θ sinθ≈θ

{tex}\begin{aligned} & \Rightarrow \mathrm{fe}=-\operatorname{mg} \theta=-\mathrm{mg}\left(\frac{\mathrm{x}}{\mathrm{l}}\right) \\ & \text { acceleration } \mathrm{a}=\frac{\mathrm{fe}}{\mathrm{m}}=\frac{-\mathrm{g}}{1} \cdot \mathrm{x} \end{aligned}{/tex}

We know for SHM, a=−w2x

{tex}\begin{aligned} & \Rightarrow \text { On comparing we get } \mathrm{w}=\sqrt{\frac{\mathrm{g}}{\mathrm{l}}} \\ & \therefore \text { Time period of oscillation } \mathrm{T}=\frac{2 \Pi}{\mathrm{w}}=2 \Pi \sqrt{\frac{1}{\mathrm{~g}}} \end{aligned}{/tex}

 

http://mycbseguide.com/examin8/

Related Questions

√kq,qpower2 R2
  • 0 answers
Project report
  • 0 answers
Ch 1 question no. 14
  • 0 answers
2d+2d =
  • 1 answers
1dyne convert to S.I unit
  • 1 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App