No products in the cart.

The diagonals of a quadrilateral ABCD …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

The diagonals of a quadrilateral ABCD intersect each other at the point o such that AO/BO=CO/DO.Show that ABCD is a trapezium
  • 2 answers

Ayush Singh 4 years, 1 month ago

???

Bharti Yadav 4 years, 1 month ago

Given: The diagonals of a quadrilateral ABCD intersect each other at the point O such that BOAO​=DOCO​ i.e., COAO​=DOBO​ To Prove: ABCD is a trapezium Construction: Draw OE∥DC such that E lies on BC. Proof: In △BDC, By Basic Proportionality Theorem, ODBO​=ECBE​............(1) But, COAO​=DOBO​ (Given) .........(2) ∴ From (1) and (2) COAO​=ECBE​ Hence, By Converse of Basic Proportionality Theorem, OE∥AB Now Since, AB∥OE∥DC ∴ AB∥DC Hence, ABCD is a trapezium.
https://examin8.com Test

Related Questions

X-y=5
  • 1 answers
Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers
Venu Gopal has twice
  • 0 answers
sin60° cos 30°+ cos60° sin 30°
  • 2 answers
(A + B )²
  • 1 answers
Prove that root 8 is an irration number
  • 2 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App