No products in the cart.

Use Euclid's division algorithm to find …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

Use Euclid's division algorithm to find HCF of 441,567,693
  • 1 answers

Aditya Singh 4 years, 2 months ago

The Euclidean Algorithm for finding HCF (A,B) is as follows: If A=0 then HCF (A,B)=B, since the HCF (0,B)=B, and we can stop.   If B=0 then HCF (A,B)=A, since the HCF (A,0)=A, and we can stop.   Write A in quotient remainder form (A=BQ+R) Find HCF (B,R) using the Euclidean Algorithm since  HCF (A,B)=HCF(B,R) Here, HCF of 441 and 567 can be found as follows:- 567=441×1+126 ⇒ 441=126×3+63 ⇒ 126=63×2+0 Since remainder is 0, therefore,  H.C.F of (441,567) is =63 Now H.C.F of 63 and 693 is 693=63×11+0 Therefore, H.C.F of (63,693)=63 Thus, H.C.F of (441,567,693)=63.
https://examin8.com Test

Related Questions

Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers
sin60° cos 30°+ cos60° sin 30°
  • 2 answers
X-y=5
  • 1 answers
Prove that root 8 is an irration number
  • 2 answers
Venu Gopal has twice
  • 0 answers
(A + B )²
  • 1 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App