If 2 parallel lines are intersected …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Sheikh Alfaz 1 month, 3 weeks ago
- 0 answers
Posted by Savitha Savitha 1 year, 4 months ago
- 0 answers
Posted by Yash Pandey 6 months, 2 weeks ago
- 0 answers
Posted by Akhilesh Patidar 1 year, 4 months ago
- 0 answers
Posted by Duruvan Sivan 6 months, 2 weeks ago
- 0 answers
Posted by Alvin Thomas 3 months, 1 week ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 4 years, 4 months ago
AB and CD are two parallel lines intersected by a transversal L. X and Y are the points of intersection of L with AB and CD respectively. XP, XQ, YP and YQ are the angle bisectors of ∠ AXY, ∠ BXY, ∠ CYX and ∠ DYX.

AB || CD and L is transversal.
∴ ∠ AXY = ∠ DYX (Pair of alternate angles)
⇒ 1/2 ∠ AXY = 1/2 ∠ DYX
⇒ ∠ 1 = ∠ 4 (∠ 1 = 1/2 ∠ AXY and ∠ 4 = 1/2 ∠ DYX)
⇒ PX/YQ (If a transversal intersects two lines in such a way that a pair of alternate interior angles are equal, then the two lines are parallel)...(1)
Also ∠ BXY = ∠ CYX (Pair of alternate angles)
⇒ 1/2 ∠ BXY = 1/2 ∠ CYX
⇒ ∠ 2 = ∠ 3 (∠ 2 = 1/2 ∠ BXY and ∠ 3 = 1/2 ∠ CYX)
⇒ PY/XQ (If a transversal intersects two lines in such a way that a pair of alternate interior angles are equal, then the two lines are parallel) ...(2)
From (1) and (2), we get
PXQY is a parallelogram ....(3)
∠ CYD = 180°
⇒ 1/2 ∠ CYD = 180/2 = 90°
⇒ 1/2 (∠CYX + ∠ DYX) = 90°
⇒ 1/2 ∠ CYX + 1/2 ∠ DYX = 90°
⇒ ∠3 + ∠ 4 = 90°
⇒ ∠ PYQ = 90° ...(4)
So, using (3) and (4), we conclude that PXQY is a rectangle.
Hence proved.
0Thank You