Prove that cos-112/13 + sin-1 3/5 …
CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Shreyas Singh 3 years, 4 months ago
- 1 answers
Related Questions
Posted by Sanjay Kumar 4 months, 2 weeks ago
- 0 answers
Posted by Charu Baid 4 months ago
- 0 answers
Posted by Tumngam Karbak 4 months, 2 weeks ago
- 0 answers
Posted by Xxxxxx Xx 4 months ago
- 0 answers
Posted by Suchitra Jain 4 months ago
- 0 answers
Posted by Sneha Pandey 4 months, 3 weeks ago
- 0 answers
Posted by Xxxxxx Xx 4 months ago
- 3 answers
Posted by Karan Kumar Mohanta 4 months, 1 week ago
- 0 answers
Posted by Sanjna Gupta 3 months, 4 weeks ago
- 4 answers
Posted by Neemisha Gusain 4 months, 2 weeks ago
- 0 answers
myCBSEguide
Trusted by 1 Crore+ Students
Test Generator
Create papers online. It's FREE.
CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
Preeti Dabral 3 years, 4 months ago
Let {tex}{\cos ^{ - 1}}\frac{{12}}{{13}} = \theta{/tex} so that {tex}\cos \theta = \frac{{12}}{{13}}{/tex}
{tex}\therefore \sin \theta = \sqrt {1 - {{\cos }^2}\theta } = \sqrt {1 - \frac{{144}}{{169}}}{/tex}{tex}= \sqrt {\frac{{25}}{{169}}} = \frac{5}{{13}}{/tex}
Again, Let {tex}{\sin ^{ - 1}}\frac{3}{5} = \phi{/tex} so that {tex}\sin \phi = \frac{3}{5}{/tex}
{tex}\therefore \cos \phi = \sqrt {1 - {{\sin }^2}\phi } = \sqrt {1 - \frac{9}{{25}}} = \sqrt {\frac{{16}}{{25}}} = \frac{4}{5}{/tex}
Since {tex}\sin \left( {\theta + \phi } \right) = \sin \theta \cos \phi + \cos \theta \sin \phi {/tex} {tex} = \frac{5}{{13}} \times \frac{4}{5} + \frac{{12}}{{13}} \times \frac{3}{5}{/tex}
{tex}= \frac{{20 + 36}}{{65}} = \frac{{56}}{{65}}{/tex}
{tex}\Rightarrow \theta + \phi = {\sin ^{ - 1}}\frac{{56}}{{65}}{/tex}
{tex} \Rightarrow {\cos ^{ - 1}}\frac{{12}}{{13}} + {\sin ^{ - 1}}\frac{3}{5} = {\sin ^{ - 1}}\frac{{56}}{{65}}{/tex}
1Thank You