No products in the cart.

Prove that the relation R in …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

Prove that the relation R in set of integers Z given by R={(a, b):(a-b) is divisible by number 2 } is an equivalence relation
  • 1 answers

Gaurav Seth 4 years, 1 month ago

R = {(a, b) : 2 divides a – b}
where R is in the set Z of integers.
(i)    a – a = 0 = 2 .0
∴ 2 divides a – a ⇒ (a, a) ∈ R ⇒ R is reflexive.
(ii) Let (a, a) ∈ R ∴ 2 divides a – b ⇒ a – b = 2 n for some n ∈ Z ⇒ b – a = 2 (–n)
⇒ 2 divides b – a ⇒ (b. a) ∈ R
(a, ft) G R ⇒ (b, a) ∈ R ∴ R is symmetric.
(iii) Let (a, b) and (b, c) ∈ R
2 divides a – b and b – c both ∴ a – b = 2 n1 and b – c = 2 n2 for some n1, n2 ∈ Z ∴ (a – b) + (b – c)= 2 n1 + 2 n2 ⇒ a – c = 2 (n1 + n2 )
⇒ 2 divides a – c
⇒ (a, c) ∈ R
∴ (a,b), (b,c) ∈ R ⇒ (a, c) ∈ R
∴ R is transitive
From (i), (ii), (iii) it follows that R is an equivalence relation.

http://mycbseguide.com/examin8/

Related Questions

Y=sin√ax^2+√bx+√c
  • 0 answers
Three friends Ravi Raju
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App