No products in the cart.

Which of the following rational numbers …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

Which of the following rational numbers have terminating decimal a)7/250b)16/225 c)5/18 d)2/21
  • 1 answers

Gaurav Seth 5 years, 1 month ago

<font face="Times New Roman, serif"><font style="box-sizing: border-box;"><font size="3"><font style="box-sizing: border-box;">(i) We have,</font></font></font></font>

<font color="#808080"><font style="box-sizing: border-box;"></font></font>

<font face="Times New Roman, serif"><font style="box-sizing: border-box;"><font size="3"><font style="box-sizing: border-box;">Theorem states: </font></font></font></font>

<font face="Times New Roman, serif"><font style="box-sizing: border-box;"><font size="3"><font style="box-sizing: border-box;">Let </font></font></font></font><font face="Times New Roman, serif"><font style="box-sizing: border-box;"><font size="3"><font style="box-sizing: border-box;">be a rational number, such that the prime factorization of q is not of the form</font></font>, where <font size="3"><font style="box-sizing: border-box;">m and n are non-negative integers.</font></font></font></font>

<font face="Times New Roman, serif"><font style="box-sizing: border-box;"><font size="3"><font style="box-sizing: border-box;">Then, x has a decimal expression which does not have terminating decimal.</font></font></font></font>

<font face="Times New Roman, serif"><font style="box-sizing: border-box;"><font size="3"><font style="box-sizing: border-box;">(ii) We have,</font></font></font></font>

<font color="#808080"><font style="box-sizing: border-box;"></font></font>

<font face="Times New Roman, serif"><font style="box-sizing: border-box;"><font size="3"><font style="box-sizing: border-box;">Theorem states: </font></font></font></font>

<font face="Times New Roman, serif"><font style="box-sizing: border-box;"><font size="3"><font style="box-sizing: border-box;">Let </font></font></font></font><font face="Times New Roman, serif"><font style="box-sizing: border-box;"><font size="3"><font style="box-sizing: border-box;">be a rational number, such that the prime factorization of q is not of the form</font></font>, where <font size="3"><font style="box-sizing: border-box;">m and n are non-negative integers.</font></font></font></font>

<font face="Times New Roman, serif"><font style="box-sizing: border-box;"><font size="3"><font style="box-sizing: border-box;">Then, x has a decimal expression which does not have terminating decimal.</font></font></font></font>

<font face="Times New Roman, serif"><font style="box-sizing: border-box;"><font size="3"><font style="box-sizing: border-box;">(iii) We have,</font></font></font></font>

<font color="#808080"><font style="box-sizing: border-box;"></font></font>

<font face="Times New Roman, serif"><font style="box-sizing: border-box;"><font size="3"><font style="box-sizing: border-box;">Theorem states: </font></font></font></font>

<font face="Times New Roman, serif"><font style="box-sizing: border-box;"><font size="3"><font style="box-sizing: border-box;">Let </font></font></font></font><font face="Times New Roman, serif"><font style="box-sizing: border-box;"><font size="3"><font style="box-sizing: border-box;">be a rational number, such that the prime factorization of q is not of the form</font></font>, where <font size="3"><font style="box-sizing: border-box;">m and n are non-negative integers.</font></font></font></font>

<font face="Times New Roman, serif"><font style="box-sizing: border-box;"><font size="3"><font style="box-sizing: border-box;">Then, x has a decimal expression which does not have terminating decimal.</font></font></font></font>

<font face="Times New Roman, serif"><font style="box-sizing: border-box;"><font size="3"><font style="box-sizing: border-box;">(iv) We have,</font></font></font></font>

<font color="#808080"><font style="box-sizing: border-box;"></font></font>

<font face="Times New Roman, serif"><font style="box-sizing: border-box;"><font size="3"><font style="box-sizing: border-box;">Theorem states: </font></font></font></font>

<font face="Times New Roman, serif"><font style="box-sizing: border-box;"><font size="3"><font style="box-sizing: border-box;">Let </font></font></font></font><font face="Times New Roman, serif"><font style="box-sizing: border-box;"><font size="3"><font style="box-sizing: border-box;">be a rational number, such that the prime factorization of q is of the form</font></font>, where <font size="3"><font style="box-sizing: border-box;">m and n are non-negative integers.</font></font></font></font>

<font face="Times New Roman, serif"><font style="box-sizing: border-box;"><font size="3"><font style="box-sizing: border-box;">Then, x has a decimal expression which terminates after k places of decimals, where k is the larger of m and n.</font></font></font></font>

<font face="Times New Roman, serif"><font style="box-sizing: border-box;"><font size="3"><font style="box-sizing: border-box;">Then, x has a decimal expression which will have terminating decimal after 3 places of decimal.</font></font></font></font>

 

https://examin8.com Test

Related Questions

X-y=5
  • 1 answers
Prove that root 8 is an irration number
  • 2 answers
Venu Gopal has twice
  • 0 answers
sin60° cos 30°+ cos60° sin 30°
  • 2 answers
(A + B )²
  • 1 answers
Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App