Solution :- (i) given that a=5 , d=3, an=50 we know nth term of an AP, an= a+(n-1)d =50=5+(n-1)3 =50-5=(n-1)3 =45=(n-1)3 =45/3=n-1 =15=n-1
=n=15+1
=n=16
Now,sum of n terms, Sn=n/2 [a+an]
Sn=16/2 [5+50] sn=16/2 ×55 Sn=8×55=440 .
(ii) given that,a=7,a13 =35 we know nth term of an AP, an =a+n-1
=a13=7+(13-1)d
=35=7=12d
=35-7=12d
=28=12d
=d=28/12=7/3
Now,sum of n terms Sn =n/2 [a+an]
S13=13/2 [7+25]
S13=13/2×42
S13=273.
(iv) given that a3=15, S10 =125 we know, nth term of an AP, An=a+(n-1)
= a3=a+(3-1)d--------------> (1)
Sum of n terms Sn=n/2
[2a+(n-1)d]
=S10=10/2 [2a+(10-1)d]
=S10=5(2a+9d)-------------> (2)
multiplying equ.(1) by (2) we get 30=2a+4d ----------> (3)
Subtracting equ.(2) from equ (3) we get 2a+4d=30
2a+9d=25
(-) (-)
_____________
-5d =5
d=___5__= -1
-5
subtracting the value of d in the equ (1)we get 15=a+2(-1)
=15=a+2=a
=15+2=a
=a=17
Therefore a10 =a+(10-1)d
a10=17+(10-1)(-1)
a10=17+(10-1)(-1)
a10=17+9×(-1)
a10=17-9
a10=8 thus , d= -1 and a10=8
(v) given that, d=5, Sq=75 we know sum of n terms, Sn=n/2 [2a+(n-1)d]
= Sq=9/2 [2a+(9-1)]
=75=9/2 [2a+40]
=75×2=9[2a+40]
=150×18a+360
=18a=150-360
=18a= -210
=a= -210/18=-35/3
we know, an =a+(9-1)d
a9=-35/3 +(9-1)5
a9= -35/3 +40
a9= -35+120/3 =85/3 thus a=-35/3 and a9=85/3
(vi) given a=2, d=8, Sn=90
we know,sum of n terms,Sn =n/2 [2a+(n-1)]
=90=n/2 [2 (2)+(n-1)4]
=90= n/2×2 [2+(n-1)4]
=90=n [2+(4n-4]
=90= n[4n-2]
=90=4n^ - 2n
=4n^-2n-90=0
=2n^-n-45=0
=2n^-10n+9n-45 (splitting the middle term)
=2n(n-5)+9(n-5)=0
=(n-5)(Zn+9)=0
=n-5=0 we know nth term of an AP = an =an=2+(5-1)8
=an=2+2 4×8
=an= 2+32
=an=34 thus, n=5 and an=34
(viii) given that an=4,d=2, Sn=-14
we know nth term of an AP,an =an=a+(n-1)2
=4=a+2n-2
=6=a+2n
=a=6-2n ------------>(1)
we know sum of n terms Sn=n/2[2a+(n-1)]
= -14=n/2×2[a+(n-1)]
= -14=n[a+(n-1)] -------------->
subtracting equ (1) in equ.(2) we get -14= [6-2n+n-1]
= -14=n [5-n]
= -14=5n-n2
=n2-5n-14=0
=n2-7n +2n-14=0
=n(n-7)+2 (n-7)=0
=(n-7)(n+2)=0
=n-7=0
=n=7 subtracting the value of'n' in the equ (1)we get
=a=6-2(7)
=a=6-14
=a= -8 thus n=7 and a= -8
(ix) given that a=3, n=8 and s=192 we know the sum of n terms of an AP Sn= n/2[a+an]
=192=8/2 [3+an]
=192=8/2[3+an]
=192/4=[3+an]
=192/4=3+an
=48=3+an
=an=48-3
=an=45
we know nth term of an AP
an=a+(n-1)d
=45=3+(8-1)d
=45=7d
=d=6
thus d=6
Ambika Ambika 5 years, 1 month ago
0Thank You